Difference between revisions of "Euler's Four-Square Identity"

(Proof)
(Added quaternion norm interpretation of identity.)
 
(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
==Identity==
 
==Identity==
The '''Four-Square Identity''', credited to [[Leonhard Euler]], states that for any eight [[Complex numbers|complex numbers]] <math>x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4</math>, we must have <cmath>(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)</cmath> <cmath>=(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2</cmath> <cmath>+(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2</cmath> <cmath>+(x_1y_3-x_3y_1+x_4y_2-x_2y_4)^2</cmath> <cmath>+(x_1y_4-x_4y_1 + x_2y_3 - x_3y_2)^2.</cmath>
+
The '''Four-Square Identity''', credited to [[Leonhard Euler]], states that for any eight [[Number|numbers]] <math>x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4</math>, we must have <cmath>(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)</cmath> <cmath>=(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2</cmath> <cmath>+(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2</cmath> <cmath>+(x_1y_3-x_3y_1+x_4y_2-x_2y_4)^2</cmath> <cmath>+(x_1y_4-x_4y_1 + x_2y_3 - x_3y_2)^2.</cmath>  
 +
(This statement can be easily verified by expansion.)
 +
In other words, ''the product of the sums of four squares is itself the sum of four squares''.
  
==Proof==
+
==Quaternionic interpretation==
First, let us expand the left-hand side of the identity: <cmath>(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_2^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_3^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_4^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2)</cmath> <cmath>= x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2 + x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2 + x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2 + x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2.</cmath> Thus, we have <cmath>(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2</cmath> <cmath>+ x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2</cmath> <cmath>+ x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2</cmath> <cmath>+ x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2. \text{          (1)}</cmath>
+
Define <math>X := x_1 + x_2 i + x_3 j + x_4 k</math> and <math>Y: = y_1 + y_2 i + y_3 j + y_4 k</math>. Recall that the quaternion norm of a number <math>a + bi + cj + dk</math>, written as <math>|a + bi + cj + dk|^2</math>, is simply <math>a^2 + b^2 + c^2 + d^2</math>.
  
Now, let us expand the first square of the right-hand side of the identity, <math>(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2</math>: <cmath>(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)^2 = (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)</cmath> <cmath>= x_1y_1 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_2 y_2 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_3 y_3 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_4 y_4 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)</cmath> <cmath>= x_1^2 y_1^2 + x_1x_2y_1y_2 + x_1x_3y_1y_3 + x_1x_4y_1y_4 + x_1x_2y_1y_2 + x_2^2 y_2^2 + x_2x_3y_2y_3 + x_2x_4y_2y_4 + x_1x_3y_1y_3 + x_2x_3y_2y_3 + x_3^2 y_3^2 + x_3x_4y_3y_4 + x_1x_4y_1y_4 + x_2x_4y_2y_4 + x_3x_4y_3y_4 + x_4^2 y_4^2</cmath> <cmath>= (x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2 + x_4^2 y_4^2) + (2x_1x_2y_1y_2 + 2x_1x_3y_1y_3 + 2x_1x_4y_1y_4 + 2x_2x_3y_2y_3 + 2x_2x_4y_2y_4 + 2x_3x_4y_3y_4).</cmath>
+
Then Euler's Four-Square Identity simply reads <math>|XY|^2 = |X|^2 |Y|^2</math>; i.e. the quaternion norm is multiplicative.
  
Next, let us expand the second square of the right-hand side of the identity, <math>(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2</math>: <cmath>(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2 = (x_1y_2-x_2y_1+x_3y_4-x_4y_3)(x_1y_2-x_2y_1+x_3y_4-x_4y_3)</cmath> <cmath>= x_1y_2 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) - x_2y_1 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) + x_3y_4 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) - x_4y_3 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3)</cmath>
+
[[Category: Equations]]

Latest revision as of 23:24, 5 November 2019

Identity

The Four-Square Identity, credited to Leonhard Euler, states that for any eight numbers $x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4$, we must have \[(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)\] \[=(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2\] \[+(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2\] \[+(x_1y_3-x_3y_1+x_4y_2-x_2y_4)^2\] \[+(x_1y_4-x_4y_1 + x_2y_3 - x_3y_2)^2.\] (This statement can be easily verified by expansion.) In other words, the product of the sums of four squares is itself the sum of four squares.

Quaternionic interpretation

Define $X := x_1 + x_2 i + x_3 j + x_4 k$ and $Y: = y_1 + y_2 i + y_3 j + y_4 k$. Recall that the quaternion norm of a number $a + bi + cj + dk$, written as $|a + bi + cj + dk|^2$, is simply $a^2 + b^2 + c^2 + d^2$.

Then Euler's Four-Square Identity simply reads $|XY|^2 = |X|^2 |Y|^2$; i.e. the quaternion norm is multiplicative.