Difference between revisions of "Factor Theorem"

m
m (See Also)
(9 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
==Statement==
 
==Statement==
The '''Factor Theorem''' says that if <math>P(x)</math> is a [[polynomial]], then <math>{x-a}</math> is a [[factor]] of <math>P(x)</math> if <math>P(a)=0</math>.
+
The '''Factor Theorem''' says that if <math>P(x)</math> is a [[polynomial]], then <math>x-a</math> is a [[factor]] of <math>P(x)</math> if and only if <math>P(a)=0</math>.
  
 
==Proof==
 
==Proof==
Line 22: Line 22:
 
===Introductory===
 
===Introductory===
 
===Intermediate===
 
===Intermediate===
 +
Suppose <math>f(x)</math> is a <math>10000000010</math>-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are <math>10000000010</math> roots, say <math>r_1, r_2, \dots, r_{10000000010}</math>. Suppose all integers <math>n</math> ranging from <math>-1</math> to <math>10000000008</math> satisfies <math>f(n)=n</math>. Also, suppose that
 +
 +
<math>(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!</math>
 +
 +
for an integer <math>m</math>. If <math>p</math> is the minimum possible positive integral value of
 +
 +
<math>(1+r_1)(1+r_2) \dots (1+r_{10000000010})</math>.
 +
 +
Find the number of factors of the prime <math>999999937</math> in <math>p</math>. (Source: I made it. Solution [[User:Ddk001#Problem_7|here]])
 +
 
===Olympaid===
 
===Olympaid===
[[1975 USAMO Problems/Problem 3|1975 USAMO Problem 3]]
+
If <math>P(x)</math> denotes a polynomial of degree <math>n</math> such that<cmath>P(k)=\frac{k}{k+1}</cmath>for <math>k=0,1,2,\ldots,n</math>, determine <math>P(n+1)</math>.
 +
 
 +
(Source: [[1975 USAMO Problems/Problem 3|1975 USAMO Problem 3]])
 +
 
 +
 
  
 +
==See Also==
 +
*[[Polynomials]]
  
{{stub}}
+
*[[Remainder Theorem]]
  
 
[[Category:Algebra]]
 
[[Category:Algebra]]
 +
 
[[Category:Polynomials]]
 
[[Category:Polynomials]]
 +
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 +
 +
 +
{{stub}}

Revision as of 21:59, 13 January 2024

In algebra, the Factor theorem is a theorem regarding the relationships between the factors of a polynomial and its roots.


One of it's most important applications is if you are given that a polynomial have certain roots, you will know certain linear factors of the polynomial. Thus, you can test if a linear factor is a factor of a polynomial without using polynomial division and instead plugging in numbers. Conversely, you can determine whether a number in the form $f(a)$ ($a$ is constant, $f$ is polynomial) is $0$ using polynomial division rather than plugging in large values.

Statement

The Factor Theorem says that if $P(x)$ is a polynomial, then $x-a$ is a factor of $P(x)$ if and only if $P(a)=0$.

Proof

If $x - a$ is a factor of $P(x)$, then $P(x) = (x - a)Q(x)$, where $Q(x)$ is a polynomial with $\deg(Q(x)) = \deg(P(x)) - 1$. Then $P(a) = (a - a)Q(a) = 0$.

Now suppose that $P(a) = 0$.

Apply Remainder Theorem to get $P(x) = (x - a)Q(x) + R(x)$, where $Q(x)$ is a polynomial with $\deg(Q(x)) = \deg(P(x)) - 1$ and $R(x)$ is the remainder polynomial such that $0\le\deg(R(x)) < \deg(x - a) = 1$. This means that $R(x)$ can be at most a constant polynomial.

Substitute $x = a$ and get $P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0$. Since $R(x)$ is a constant polynomial, $R(x) = 0$ for all $x$.

Therefore, $P(x) = (x - a)Q(x)$, which shows that $x - a$ is a factor of $P(x)$.

Problems

Here are some problems that can be solved using the Factor Theorem:

Introductory

Intermediate

Suppose $f(x)$ is a $10000000010$-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are $10000000010$ roots, say $r_1, r_2, \dots, r_{10000000010}$. Suppose all integers $n$ ranging from $-1$ to $10000000008$ satisfies $f(n)=n$. Also, suppose that

$(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!$

for an integer $m$. If $p$ is the minimum possible positive integral value of

$(1+r_1)(1+r_2) \dots (1+r_{10000000010})$.

Find the number of factors of the prime $999999937$ in $p$. (Source: I made it. Solution here)

Olympaid

If $P(x)$ denotes a polynomial of degree $n$ such that\[P(k)=\frac{k}{k+1}\]for $k=0,1,2,\ldots,n$, determine $P(n+1)$.

(Source: 1975 USAMO Problem 3)


See Also


This article is a stub. Help us out by expanding it.