# Fundamental group

Perhaps the simplest object of study in algebraic topology is the **fundamental group**.

Let be a based, path-connected topological space (that is, is a topological space, and is some point in ). Now consider all possible "loops" on that start and end at , i.e. all continuous functions with . Call this collection (the **loop space** of ). Now define an equivalence relation on by saying that if there is a (based) homotopy between and (that is, if there is a continuous function with , , and ). Now let be the set of equivalence classes of under .

Now define a binary operation (called *concatenation*) on by
One can check that if and then , and so induces a well-defined binary operation on .

One can now check that the operation makes into a group. The identity element is just the constant loop , and the inverse of a loop is just the loop traversed in the opposite direction (i.e. the loop ). We call the **fundamental group** of .

Note that the fundamental group is not in general abelian. For example, the fundamental group of a figure eight is the free group on two generators, which is not abelian. However, the fundamental group of a circle is , which is abelian.

More generally, if is an h-space, then is abelian, for there is a second multiplication on given by , which is "compatible" with the concatenation in the following respect:

We say that two binary operations on a set are compatible if, for every ,

If share the same unit (such that ) then and both are abelian.