Difference between revisions of "Group"

m
m
Line 1: Line 1:
A '''group''' <math>G</math> is a [[set]] of elements together with an [[operation]] <math>\cdot:G\times G\to G</math> (the dot is frequently suppressed, so <math>ab</math> is written instead of <math>a\cdot b</math>) satisfying the following conditions:
+
A '''group''' <math>G</math> is a [[set]] of elements together with an [[operation]] <math>\cdot:G\times G\to G</math> (the dot is frequently suppressed, so <math>ab</math> is written instead of <math>a\cdot b</math>) satisfying the following conditions, known as the group axioms:
  
 
* For all <math>a,b,c\in G</math>, <math>a(bc)=(ab)c</math> ([[associative|associativity]]).
 
* For all <math>a,b,c\in G</math>, <math>a(bc)=(ab)c</math> ([[associative|associativity]]).

Revision as of 11:18, 12 November 2023

A group $G$ is a set of elements together with an operation $\cdot:G\times G\to G$ (the dot is frequently suppressed, so $ab$ is written instead of $a\cdot b$) satisfying the following conditions, known as the group axioms:

(Equivalently, a group is a monoid with inverses.)

Note that the group operation need not be commutative. If the group operation is commutative, we call the group an abelian group (after the Norwegian mathematician Niels Henrik Abel).

Groups frequently arise as permutations or symmetries of collections of objects. For example, the rigid motions of $\mathbb{R}^2$ that fix a certain regular $n$-gon is a group, called the dihedral group and denoted in some texts $D_{2n}$ (since it has $2n$ elements) and in others $D_n$ (since it preserves a regular $n$-gon). Another example of a group is the symmetric group $S_n$ of all permutations of $\{1,2,\ldots,n\}$.

See Also

This article is a stub. Help us out by expanding it.