Difference between revisions of "Infinite"

m
m
Line 1: Line 1:
{{stub}}
 
 
 
 
 
A [[set]] <math>S</math> is said to be '''infinite''' if there is a [[surjection]] <math>f:S\to\mathbb{Z}</math>. If this is not the case, <math>S</math> is said to be [[finite]].
 
A [[set]] <math>S</math> is said to be '''infinite''' if there is a [[surjection]] <math>f:S\to\mathbb{Z}</math>. If this is not the case, <math>S</math> is said to be [[finite]].
  
Line 9: Line 5:
 
===Equivalent formulations===  
 
===Equivalent formulations===  
 
* A set is infinite if it can be put into [[bijection]] with one of its proper [[subset]]s.   
 
* A set is infinite if it can be put into [[bijection]] with one of its proper [[subset]]s.   
 +
* A set is infinite if it is not empty and cannot be put into bijection with any set of the form <math>\{1, 2, \ldots, n\}</math> for a [[positive integer]] <math>n</math>.
  
* A set is infinite if it is not empty and cannot be put into bijection with any set of the form <math>\{1, 2, \ldots, n\}</math> for a [[positive integer]] <math>n</math>.
+
{{stub}}

Revision as of 19:16, 22 April 2008

A set $S$ is said to be infinite if there is a surjection $f:S\to\mathbb{Z}$. If this is not the case, $S$ is said to be finite.

In simplified language, a set is infinite if it doesn't end, i.e. you can always find another element that you haven't examined yet.

Equivalent formulations

  • A set is infinite if it can be put into bijection with one of its proper subsets.
  • A set is infinite if it is not empty and cannot be put into bijection with any set of the form $\{1, 2, \ldots, n\}$ for a positive integer $n$.

This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS