Difference between revisions of "Lucas' Theorem"

(New page: Let <math>p</math> be a prime. If <math>(\overline{n_mn_{m-1}\cdots n_0})_p</math> is the base <math>p</math> representation of <math>n</math> and <math>(\overline{i_mi_{m-1}\cdots i_0})_p...)
 
m (Proof)
Line 2: Line 2:
  
 
== Proof ==
 
== Proof ==
 +
=== Lemma ===
 +
For <math>p</math> prime and <math>x,r\in\mathbb{Z}</math>,
 +
<cmath>(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}</cmath>
 +
=== Proof ===
 +
For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have that <center><math>\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\
 +
&\equiv& 1+x^p\pmod{p}\end{eqnarray*}</math></center> Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then <center><math>\begin{eqnarray*}(1+x)^{p^{k+1}}
 +
&\equiv&\left((1+x)^{p^k}\right)^p\\
 +
&\equiv&\left(1+x^{p^k}\right)^p\\
 +
&\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\
 +
&\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</math></center>
  
 
== Links ==
 
== Links ==

Revision as of 11:22, 8 November 2007

Let $p$ be a prime. If $(\overline{n_mn_{m-1}\cdots n_0})_p$ is the base $p$ representation of $n$ and $(\overline{i_mi_{m-1}\cdots i_0})_p$ is the base $p$ representation of $i$, where $n\geq i$, Lucas' Theorem states that \[\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}\]

Proof

Lemma

For $p$ prime and $x,r\in\mathbb{Z}$, \[(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}\]

Proof

For all $1\leq k \leq p-1$, $\binom{p}{k}\equiv 0 \pmod{p}$. Then we have that

$\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\ &\equiv& 1+x^p\pmod{p}\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Assume we have $(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}$. Then

$\begin{eqnarray*}(1+x)^{p^{k+1}}

&\equiv&\left((1+x)^{p^k}\right)^p\\ &\equiv&\left(1+x^{p^k}\right)^p\\ &\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\

&\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Links

See also