Revision as of 23:42, 11 February 2021 by Twod horse (talk | contribs)

This article is a stub. Help us out by expanding it.


The midpoint of a line segment is the point on the segment equidistant from both endpoints.

A midpoint bisects the line segment that the midpoint lies on. Because of this property, we say that for any line segment $\overline{AB}$ with midpoint $M$, $AM=BM=\frac{1}{2}AB$. Alternatively, any point $M$ on $\overline{AB}$ such that $AM=BM$ is the midpoint of the segment. [asy] draw((0,0)--(4,0)); dot((0,0)); label("A",(0,0),N); dot((4,0)); label("B",(4,0),N); dot((2,0)); label("M",(2,0),N); [/asy]

In Cartesian Plane

In the Cartesian Plane, the coordinates of the midpoint $M$ can be obtained when the two endpoints $A$, $B$ of the line segment $\overline{AB}$ is known. Say that $A: A(x_A,y_A)$ and $B: B(x_B,y_B)$. The Midpoint Formula states that the coordinates of $M$ can be calculated as: \begin{align*} M(\frac{x_A+x_B}{2}&,\frac{y_A+y_B}{2}) \end{align*}

See Also

Invalid username
Login to AoPS