Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 5"

Line 37: Line 37:
 
Let <math>k</math> be the 2nd digit of <math>n</math>
 
Let <math>k</math> be the 2nd digit of <math>n</math>
  
<math>2000+100k \le n \le 2099+9k</math>, and <math>2^2+k^2 \le S(n) \le 2^2+k^2+2 \times 9^2</math>
+
<math>2000+100k \le n \le 2099+100k</math>, and <math>2^2+k^2 \le S(n) \le 2^2+k^2+2 \times 9^2</math>
  
 
<math>(k-1)100+93 \le n-2007 \le (k-1)100+92</math>, and <math>4+k^2 \le S(n) \le 166+k^2</math>
 
<math>(k-1)100+93 \le n-2007 \le (k-1)100+92</math>, and <math>4+k^2 \le S(n) \le 166+k^2</math>

Revision as of 15:37, 24 November 2023

Problem

Let $S(n)$ be the sum of the squares of the digits of $n$. How many positive integers $n>2007$ satisfy the inequality $n-S(n)\le 2007$?

Solution

We start by rearranging the inequality the following way:

$n-2007\le S(n)$ and compare the possible values for the left hand side and the right hand side of this inequality.

Case 1: $n$ has 5 digits or more.

Let $d$ = number of digits of n.

Then as a function of d,

$10^d \le n < 10^{d+1}-1$, and $1 \le S(n) \le 9^2d$

$10^d - 2007 \le n-2007 < 10^{d+1}-2008$, and $1 \le S(n) \le 81d$

when $d \ge 5$,

$10^d - 2007 \ge 10^5 -2007$

$10^d - 2007 \ge 10^5 -2007 > 81d$

Since $10^d - 2007 > 81d$ for $d \ge 5$, then $n-2007\not\le S(n)$ and there is no possible $n$ when $n$ has 5 or more digits.

Case 2: $n$ has 4 digits and $n \ge 3000$

$3000 \le n \le 9999$, and $3^2 \le S(n) \le 3^2+3 \times 9^2$

$993 \le n-2007 \le 7992$, and $9 \le S(n) \le 252$

Since $993 > 252$, then $n-2007\not\le S(n)$ and there is no possible $n$ when $n$ has 4 digits and $n \ge 3000$.

Case 3: $2100 \le n \le 2999$

Let $k$ be the 2nd digit of $n$

$2000+100k \le n \le 2099+100k$, and $2^2+k^2 \le S(n) \le 2^2+k^2+2 \times 9^2$

$(k-1)100+93 \le n-2007 \le (k-1)100+92$, and $4+k^2 \le S(n) \le 166+k^2$


...ongoing writing of solution...

~Tomas Diaz. orders@tomasdiaz.com