Difference between revisions of "Power Mean Inequality"

m (Inequality)
(Added proof)
Line 15: Line 15:
  
 
The Power Mean Inequality follows from the fact that <math>\frac{\partial M(t)}{\partial t}\geq 0</math> (where <math>M(t)</math> is the <math>t</math>th power mean) together with [[Jensen's Inequality]].
 
The Power Mean Inequality follows from the fact that <math>\frac{\partial M(t)}{\partial t}\geq 0</math> (where <math>M(t)</math> is the <math>t</math>th power mean) together with [[Jensen's Inequality]].
 +
== Proof ==
 +
<cmath>
 +
\left(\sum_{i=1}^n \frac{a_{i}^{k_1}}{n}\right)^{\frac{1}{k_1}}\ge \left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)^{\frac{1}{k_2}}
 +
</cmath>
 +
Raising both sides to the <math>k_1</math>th power, we get
 +
<cmath>
 +
\sum_{i=1}^n \frac{a_{i}^{k_1}}{n}\ge \left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)^{\frac{k_1}{k_2}}
 +
</cmath>
  
 +
We can see that the function <math>f(x)=x^{\frac{k_1}{k_2}}</math> is convex for all <math>x \> 0</math>, and so we can apply [[Jensen's Inequality]]. Therefore,
 +
<cmath>
 +
\left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)^{\frac{k_1}{k_2}}= f\left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)\le \sum_{i=1}^n f\left(\frac{a_i}{n}\right)= \sum_{i=1}^n \frac{a_{i}^{k_1}}{n}
 +
</cmath>
 
{{stub}}
 
{{stub}}
 
[[Category:Inequality]]
 
[[Category:Inequality]]
 
[[Category:Theorems]]
 
[[Category:Theorems]]

Revision as of 05:05, 13 April 2017

The Power Mean Inequality is a generalized form of the multi-variable Arithmetic Mean-Geometric Mean Inequality.

Inequality

For real numbers $k_1,k_2$ and positive real numbers $a_1, a_2, \ldots, a_n$, $k_1\ge k_2$ implies the $k_1$th power mean is greater than or equal to the $k_2$th.

Algebraically, $k_1\ge k_2$ implies that \[\sqrt[k_1]{\frac{a_{1}^{k_1}+a_{2}^{k_1}+\cdots +a_{n}^{k_1}}{n}}\ge \sqrt[k_2]{\frac{a_{1}^{k_2}+a_{2}^{k_2}+\cdots +a_{n}^{k_2}}{n}}\]

which can be written more concisely as \[\sqrt[k_1]{\frac{\sum\limits_{i=1}^n a_{i}^{k_1}}{n}}\ge \sqrt[k_2]{\frac{\sum\limits_{i=1}^n a_{i}^{k_2}}{n}}\]

The Power Mean Inequality follows from the fact that $\frac{\partial M(t)}{\partial t}\geq 0$ (where $M(t)$ is the $t$th power mean) together with Jensen's Inequality.

Proof

\[\left(\sum_{i=1}^n \frac{a_{i}^{k_1}}{n}\right)^{\frac{1}{k_1}}\ge \left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)^{\frac{1}{k_2}}\] Raising both sides to the $k_1$th power, we get \[\sum_{i=1}^n \frac{a_{i}^{k_1}}{n}\ge \left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)^{\frac{k_1}{k_2}}\]

We can see that the function $f(x)=x^{\frac{k_1}{k_2}}$ is convex for all $x \> 0$, and so we can apply Jensen's Inequality. Therefore, \[\left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)^{\frac{k_1}{k_2}}= f\left(\sum_{i=1}^n \frac{a_{i}^{k_2}}{n}\right)\le \sum_{i=1}^n f\left(\frac{a_i}{n}\right)= \sum_{i=1}^n \frac{a_{i}^{k_1}}{n}\] This article is a stub. Help us out by expanding it.