Radon's Inequality

Revision as of 16:16, 14 March 2023 by Dvdtsb (talk | contribs) (Created page with "Radon's Inequality states: <cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Radon's Inequality states:

\[\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p}\]

It is a direct consequence of Hölder's Inequality, and a generalization of Titu's Lemma.

Proof

Just apply Hölder for:

\[(b_1 + b_2 + \cdots+ b_n )^{\frac{p}{p+1}}\left(\frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p }\right)^{\frac{1}{p+1}} \geq a_1 + a_2 + \cdots+ a_n\]