Difference between revisions of "Schonemann's criterion"

(Created page with 'For a polynomial q denote by <math>q^*</math> the residue of <math>q</math> modulo <math>p</math>. Suppose the following conditions hold: <list> <it> <math>k=f^n+pg</math> with <…')
 
Line 1: Line 1:
 
For a polynomial q denote by <math>q^*</math> the residue of <math>q</math> modulo <math>p</math>.
 
For a polynomial q denote by <math>q^*</math> the residue of <math>q</math> modulo <math>p</math>.
 
Suppose the following conditions hold:
 
Suppose the following conditions hold:
<list>
+
* <math>k=f^n+pg</math> with <math>n\geq 1</math>, <math>p</math> prime, and <math>f,g\in \mathbb{Z}[X]</math>.
<it> <math>k=f^n+pg</math> with <math>n\geq 1</math>, <math>p</math> prime, and <math>f,g\in \mathbb{Z}[X]</math>.
+
* <math>\text{deg}(f^n)>\text{deg}(g)</math>
<it> <math>\text{deg}(f^n)>\text{deg}(g)</math>
+
* <math>k</math> is primitive
<it> <math>k</math> is primitive
+
* <math>f^*</math> is irreducible in <math>\mathbb{F}_p[X]</math>.
<it> <math>f^*</math> is irreducible in <math>\mathbb{F}_p[X]</math>.
+
* <math>f^*</math> does not divide <math>g^*</math>.
<it> <math>f^*</math> does not divide <math>g^*</math>.
 
<\list>
 
 
Then <math>k</math> is irreducible in <math>\mathbb{Q}[X]</math>.
 
Then <math>k</math> is irreducible in <math>\mathbb{Q}[X]</math>.
  
 
See also [[Eisenstein's criterion]].
 
See also [[Eisenstein's criterion]].

Revision as of 11:43, 18 December 2009

For a polynomial q denote by $q^*$ the residue of $q$ modulo $p$. Suppose the following conditions hold:

  • $k=f^n+pg$ with $n\geq 1$, $p$ prime, and $f,g\in \mathbb{Z}[X]$.
  • $\text{deg}(f^n)>\text{deg}(g)$
  • $k$ is primitive
  • $f^*$ is irreducible in $\mathbb{F}_p[X]$.
  • $f^*$ does not divide $g^*$.

Then $k$ is irreducible in $\mathbb{Q}[X]$.

See also Eisenstein's criterion.