Shoelace Theorem

Revision as of 09:34, 24 March 2019 by Djmathman (talk | contribs) (no need for an incomplete third proof)

The Shoelace Theorem is a nifty formula for finding the area of a polygon given the coordinates of its vertices.


Suppose the polygon $P$ has vertices $(a_1, b_1)$, $(a_2, b_2)$, ... , $(a_n, b_n)$, listed in clockwise order. Then the area of $P$ is

\[\dfrac{1}{2} |(a_1b_2 + a_2b_3 + \cdots + a_nb_1) - (b_1a_2 + b_2a_3 + \cdots + b_na_1)|\]

You can also go counterclockwise order, as long as you find the absolute value of the answer.

The Shoelace Theorem gets its name because if one lists the coordinates in a column, \begin{align*} (a_1 &, b_1) \\ (a_2 &, b_2) \\ & \vdots \\ (a_n &, b_n) \\ (a_1 &, b_1) \\ \end{align*} and marks the pairs of coordinates to be multiplied, the resulting image looks like laced-up shoes.

Proof 1

Claim 1: The area of a triangle with coordinates $A(x_1, y_1)$, $B(x_2, y_2)$, and $C(x_3, y_3)$ is $\frac{x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2}{2}$.

Proof of claim 1:

Writing the coordinates in 3D and translating $\triangle ABC$ so that $A=(0, 0, 0)$ we get the new coordinates $A'(0, 0, 0)$, $B(x_2-x_1, y_2-y_1, 0)$, and $C(x_3-x_1, y_3-y_1, 0)$. Now if we let $\vec{b}=(x_2-x_1 \quad y_2-y_1 \quad 0)$ and $\vec{c}=(x_3-x_1 \quad y_3-y_1 \quad 0)$ then by definition of the cross product $[ABC]=\frac{||\vec{b} \times \vec{c}||}{2}=\frac{1}{2}||(0 \quad 0 \quad x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2)||=\frac{x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2}{2}$.


We will proceed with induction.

By claim 1, the shoelace theorem holds for any triangle. We will show that if it is true for some polygon $A_1A_2A_3...A_n$ then it is also true for $A_1A_2A_3...A_nA_{n+1}$.

We cut $A_1A_2A_3...A_nA_{n+1}$ into two polygons, $A_1A_2A_3...A_n$ and $A_1A_nA_{n+1}$. Let the coordinates of point $A_i$ be $(x_i, y_i)$. Then, applying the shoelace theorem on $A_1A_2A_3...A_n$ and $A_1A_nA_{n+1}$ we get

\[[A_1A_2A_3...A_n]=\frac{1}{2}\sum_{i=1}^{n}(x_iy_{i+1}-x_{i+1}y_i)\] \[[A_1A_nA_{n+1}]=\frac{1}{2}(x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2)\]


\[[A_1A_2A_3...A_nA_{n+1}]=[A_1A_2A_3...A_n]+[A_1A_nA_{n+1}]=\frac{1}{2}\sum_{i=1}^{n}(x_iy_{i+1}-x_{i+1}y_i)+\frac{1}{2}(x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2)\] \[=\frac{1}{2}((x_2y_1+x_3y_2+...+x_{n+1}y_n+x_1y_{n+1})-(x_1y_2+x_2y_3+...+x_ny_{n+1}+x_{n+1}y_1))=\boxed{\frac{1}{2}\sum_{i=1}^n(x_iy_{i+1}-x_{i+1}y_i)}\]

As claimed.


Proof 2

Let $\Omega$ be the set of points belonging to the polygon. We have that \[A=\int_{\Omega}\alpha,\] where $\alpha=dx\wedge dy$. The volume form $\alpha$ is an exact form since $d\omega=\alpha$, where \[\omega=\frac{x\,dy}{2}-\frac{y\,dx}{2}.\label{omega}\] Using this substitution, we have \[\int_{\Omega}\alpha=\int_{\Omega}d\omega.\] Next, we use the theorem of Stokes to obtain \[\int_{\Omega}d\omega=\int_{\partial\Omega}\omega.\] We can write $\partial \Omega=\bigcup A(i)$, where $A(i)$ is the line segment from $(x_i,y_i)$ to $(x_{i+1},y_{i+1})$. With this notation, we may write \[\int_{\partial\Omega}\omega=\sum_{i=1}^n\int_{A(i)}\omega.\] If we substitute for $\omega$, we obtain \[\sum_{i=1}^n\int_{A(i)}\omega=\frac{1}{2}\sum_{i=1}^n\int_{A(i)}{x\,dy}-{y\,dx}.\] If we parameterize, we get \[\frac{1}{2}\sum_{i=1}^n\int_0^1{(x_i+(x_{i+1}-x_i)t)(y_{i+1}-y_i)}-{(y_i+(y_{i+1}-y_i)t)(x_{i+1}-x_i)\,dt}.\] Performing the integration, we get \[\frac{1}{2}\sum_{i=1}^n\frac{1}{2}[(x_i+x_{i+1})(y_{i+1}-y_i)- (y_{i}+y_{i+1})(x_{i+1}-x_i)].\] More algebra yields the result \[\frac{1}{2}\sum_{i=1}^n(x_iy_{i+1}-x_{i+1}y_i).\]



In right triangle $ABC$, we have $\angle ACB=90^{\circ}$, $AC=2$, and $BC=3$. Medians $AD$ and $BE$ are drawn to sides $BC$ and $AC$, respectively. $AD$ and $BE$ intersect at point $F$. Find the area of $\triangle ABF$.

External Links

A good explanation and exploration into why the theorem works by James Tanton: [1] AOPS

Invalid username
Login to AoPS