Difference between revisions of "Simon's Favorite Factoring Trick"

(Olympiad)
(The General Statement)
Line 1: Line 1:
  
 
==The General Statement==
 
==The General Statement==
The general statement of SFFT is: <math>{xy}+{xk}+{yj}+{jk}=(x+j)(y+k)</math>. Two special common cases are: <math>xy + x + y + 1 = (x+1)(y+1)</math> and <math>xy - x - y +1 = (x-1)(y-1)</math>.
+
You have been hacked.
 
 
The act of adding <math>{jk}</math> to <math>{xy}+{xk}+{yj}</math> in order to be able to factor it could be called "completing the rectangle" in analogy to the more familiar "completing the square."
 
  
 
== Applications ==
 
== Applications ==

Revision as of 11:19, 29 July 2020

The General Statement

You have been hacked.

Applications

This factorization frequently shows up on contest problems, especially those heavy on algebraic manipulation. Usually $x$ and $y$ are variables and $j,k$ are known constants. Also, it is typically necessary to add the $jk$ term to both sides to perform the factorization.

Fun Practice Problems

Introductory

  • Two different prime numbers between $4$ and $18$ are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?

$\mathrm{(A) \ 22 } \qquad \mathrm{(B) \ 60 } \qquad \mathrm{(C) \ 119 } \qquad \mathrm{(D) \ 180 } \qquad \mathrm{(E) \ 231 }$

(Source)

Intermediate

  • $m, n$ are integers such that $m^2 + 3m^2n^2 = 30n^2 + 517$. Find $3m^2n^2$.

(Source)

Olympiad

  • The integer $N$ is positive. There are exactly 2005 ordered pairs $(x, y)$ of positive integers satisfying:

\[\frac 1x +\frac 1y = \frac 1N\]

Prove that $N$ is a perfect square.

Source: (British Mathematical Olympiad Round 3, 2005)

See More

Invalid username
Login to AoPS