# Difference between revisions of "Simon's Favorite Factoring Trick"

m (Title added for Simon with his consent. (Actually with him watching me doing it, so don't change this people)) |
|||

Line 1: | Line 1: | ||

− | ''' | + | '''Simon's Favorite Factoring Trick''' (abbreviated '''SFFT''') is a special factorization first popularized by [[AoPS]] user [[user:ComplexZeta | Simon Rubinstein-Salzedo]]. <url>viewtopic.php?highlight=factoring&t=8215 This</url> appears to be the thread where Simon's favorite factoring trick was first introduced. The general statement of SFFT is: <math>{xy}+{xk}+{yj}+{jk}=(x+j)(y+k)</math>. Two special common cases are: <math>xy + x + y + 1 = (x+1)(y+1)</math> and <math>xy - x - y +1 = (x-1)(y-1)</math>. |

The act of adding <math>{jk}</math> to <math>{xy}+{xk}+{yj}</math> in order to be able to factor it could be called "completing the rectangle" in analogy to the more familiar "completing the square." | The act of adding <math>{jk}</math> to <math>{xy}+{xk}+{yj}</math> in order to be able to factor it could be called "completing the rectangle" in analogy to the more familiar "completing the square." |

## Revision as of 17:55, 6 November 2012

**Simon's Favorite Factoring Trick** (abbreviated **SFFT**) is a special factorization first popularized by AoPS user Simon Rubinstein-Salzedo. <url>viewtopic.php?highlight=factoring&t=8215 This</url> appears to be the thread where Simon's favorite factoring trick was first introduced. The general statement of SFFT is: . Two special common cases are: and .

The act of adding to in order to be able to factor it could be called "completing the rectangle" in analogy to the more familiar "completing the square."

## Applications

This factorization frequently shows up on contest problems, especially those heavy on algebraic manipulation. Usually and are variables and are known constants. Also, it is typically necessary to add the term to both sides to perform the factorization.

## Problems

### Introductory

- Two different prime numbers between and are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?

(Source)

### Intermediate

- are integers such that . Find .

(Source)

### Olympiad

*This problem has not been edited in. If you know this problem, please help us out by adding it.*