Difference between revisions of "Summation"

m (spelling)
m (Definitions: only one definition)
Line 1: Line 1:
 
A '''summation''' is a form of shorthand used often.
 
A '''summation''' is a form of shorthand used often.
  
==Definitions==
+
==Definition==
 
For <math>b\ge a</math>, and a set <math>c</math> (or any other algebraic structure), <math>\sum_{i=a}^{b}c_i=c_a+c_{a+1}+c_{a+2}...+c_{b-1}+c_{b}</math>. Note that if <math>a>b</math>, then the sum is <math>0</math>.
 
For <math>b\ge a</math>, and a set <math>c</math> (or any other algebraic structure), <math>\sum_{i=a}^{b}c_i=c_a+c_{a+1}+c_{a+2}...+c_{b-1}+c_{b}</math>. Note that if <math>a>b</math>, then the sum is <math>0</math>.
  

Revision as of 12:40, 23 November 2007

A summation is a form of shorthand used often.

Definition

For $b\ge a$, and a set $c$ (or any other algebraic structure), $\sum_{i=a}^{b}c_i=c_a+c_{a+1}+c_{a+2}...+c_{b-1}+c_{b}$. Note that if $a>b$, then the sum is $0$.

Rules

  • $\sum_{i=a}^{b}f(i)+g(i)=\sum_{i=a}^{b}f(i)+\sum_{i=a}^{b}g(i)$
  • $\sum_{i=a}^{b}c\cdot f(i)=c\cdot \sum_{i=a}^{b}f(i)$
  • $\sum_{i=1}^{n} i= \frac{n(n+1)}{2}$, and in general $\sum_{i=a}^{b} i= \frac{(b-a+1)(a+b)}{2}$
  • $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
  • $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \left(\frac{n(n+1)}{2}\right)^2$

Special Summations

Certain types of summations are different from the common variety, such as cyclic sums, and symmetric sums.

See Also

Invalid username
Login to AoPS