Difference between revisions of "Talk:2021 Fall AMC 12B Problems/Problem 20"

(Solution 3 (Burnside Lemma))
(Solution 3 (Burnside Lemma))
 
(4 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
2. the sum of stablizer can be counted as <math>fix(g)</math>  
 
2. the sum of stablizer can be counted as <math>fix(g)</math>  
  
3. the sum of the <math>fix(g)/|G|</math> equals to the # of orbit.  
+
3. the sum of the <math>fix(g)/|G|</math> equals the # of orbit.  
  
  
Line 16: Line 16:
 
1. <math>\textbf{e (identity)}</math>
 
1. <math>\textbf{e (identity)}</math>
  
For identity, there are <math>\frac{8!}{4!4!} = 70</math>
+
For identity, there are <math>\frac{8!}{4!4!} = 70</math>  
  
  
2. <math>\textbf{r^{1}, r^{2}, r^{3}}</math> to be the rotation axis along three pair of opposite face,  
+
2. <math>{\bf r^{1}, r^{2}, r^{3}}</math> to be the rotation axis along three pair of opposite face,  
  
each contains <math>r^{i}_{90}, r^{i}_{180}, r^{i}_{270} </math> where <math> i= 1, 2, 3</math>
+
each contains <math>r^{i}_{90}, r^{i}_{180}, r^{i}_{270}</math> where <math>i= 1, 2, 3</math>
 +
 
 +
<math>fix(r^{i}_{90}) = fix(r^{i}_{270}) = 2\cdot1 = 2 </math>
 +
 
 +
<math>fix(r^{i}_{180}) = \frac{4!}{2!\cdot2!} = 6 </math>
 +
 
 +
therefore <math>fix(\bf r^{i}) = 2+2+6 = 10 </math>, and <math>fix(\bf r^{1})+fix(\bf r^{2})+fix(\bf r^{3}) = 30 </math>
 
   
 
   
  
3. <math>\textbf{r^{4}, r^{5}, r^{6}, r^{7}} to the rotation axis along four cube diagnals.  
+
3. <math>{\bf r^{4}, r^{5}, r^{6}, r^{7}}</math> to the rotation axis along four cube diagnals.  
 +
 
 +
each contains <math>r^{i}_{120}, r^{i}_{240}</math>  where <math>i= 4, 5, 6, 7</math>
 +
 
 +
<math>fix(r^{i}_{120}) = fix(r^{i}_{240}) = 2\cdot1\cdot2\cdot1 = 4 </math>
 +
 
 +
therefore <math>fix(\bf r^{i}) = 4+4 = 8 </math>, and <math>fix(\bf r^{4})+fix(\bf r^{5})+fix(\bf r^{6})+fix(\bf r^{7}) = 32 </math>
 +
 
 +
 
 +
 
 +
4. <math>{\bf r^{8}, r^{9}, r^{10}, r^{11}, r^{12}, r^{13}}</math> to be the rotation axis along 6 pairs of diagnally opposite sides
 +
 
 +
each contains <math>r^{i}_{180}</math>  where <math>i= 8, 9, 10, 11, 12, 13</math>
 +
 
 +
<math>fix(r^{i}_{180}) = \frac{4!}{2!\cdot2!} = 6 </math>
 +
 
 +
therefore <math>fix(\bf r^{8})+fix(\bf r^{9})+fix(\bf r^{10})+fix(\bf r^{11})+fix(\bf r^{12})+fix(\bf r^{13}) = 36 </math>
 +
 
 +
 
 +
5. The total number of operators are
 +
 
 +
<math>|G| = 1 + 3\cdot3 + 4\cdot2 + 6\cdot1 = 24 </math>
  
4. </math>\textbf{r^{8}, r^{9}, r^{10}, r^{11}, r^{12}, r^{13}}
+
Based on 1, 2, 3, 4 the total number of stablizer is
 +
<math>70 + 30 + 32 + 36 = 168</math>
  
 +
therefore the number of orbit <math>= \frac{168}{G=24} = \boxed{7} </math>
  
  
 
~wwei.yu
 
~wwei.yu

Latest revision as of 03:23, 29 November 2021

Solution 3 (Burnside Lemma)

Burnside lemma is used to counting number of orbit where the element on the same orbit can be achieved by the defined operator, naming rotation, reflection and etc.

The fact for Burnside lemma are

1. the sum of stablizer on the same orbit equals to the # of operators;

2. the sum of stablizer can be counted as $fix(g)$

3. the sum of the $fix(g)/|G|$ equals the # of orbit.


Let's start with defining the operator for a cube,

1. $\textbf{e (identity)}$

For identity, there are $\frac{8!}{4!4!} = 70$


2. ${\bf r^{1}, r^{2}, r^{3}}$ to be the rotation axis along three pair of opposite face,

each contains $r^{i}_{90}, r^{i}_{180}, r^{i}_{270}$ where $i= 1, 2, 3$

$fix(r^{i}_{90}) = fix(r^{i}_{270}) = 2\cdot1 = 2$

$fix(r^{i}_{180}) = \frac{4!}{2!\cdot2!} = 6$

therefore $fix(\bf r^{i}) = 2+2+6 = 10$, and $fix(\bf r^{1})+fix(\bf r^{2})+fix(\bf r^{3}) = 30$


3. ${\bf r^{4}, r^{5}, r^{6}, r^{7}}$ to the rotation axis along four cube diagnals.

each contains $r^{i}_{120}, r^{i}_{240}$ where $i= 4, 5, 6, 7$

$fix(r^{i}_{120}) = fix(r^{i}_{240}) = 2\cdot1\cdot2\cdot1 = 4$

therefore $fix(\bf r^{i}) = 4+4 = 8$, and $fix(\bf r^{4})+fix(\bf r^{5})+fix(\bf r^{6})+fix(\bf r^{7}) = 32$


4. ${\bf r^{8}, r^{9}, r^{10}, r^{11}, r^{12}, r^{13}}$ to be the rotation axis along 6 pairs of diagnally opposite sides

each contains $r^{i}_{180}$ where $i= 8, 9, 10, 11, 12, 13$

$fix(r^{i}_{180}) = \frac{4!}{2!\cdot2!} = 6$

therefore $fix(\bf r^{8})+fix(\bf r^{9})+fix(\bf r^{10})+fix(\bf r^{11})+fix(\bf r^{12})+fix(\bf r^{13}) = 36$


5. The total number of operators are

$|G| = 1 + 3\cdot3 + 4\cdot2 + 6\cdot1 = 24$

Based on 1, 2, 3, 4 the total number of stablizer is $70 + 30 + 32 + 36 = 168$

therefore the number of orbit $= \frac{168}{G=24} = \boxed{7}$


~wwei.yu