# Difference between revisions of "User:Geometry285"

Posting here until I find a place for an upcoming mock I’m creating

## Problem 1

What value of $x$ minimizes $|||2^|x^2| - 4|-4|-8|$? $\textbf{(A)}\ -2\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ 2$

## Problem 2

Suppose Mark wanted to arrange $5$ books onto a bookshelf, $3$ of which are math books and $2$ of which are science. If both science and math books are indistinguishable, in how many ways can Mark arrange the books on the shelf? $\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 15$

## Problem 3

Let $ABCD$ be a unit square. If points $E$ and $F$ are chosen on $AB$ and $CD$ respectively such that the area of $\triangle AEF = \frac{3}{2} \triangle CFE$. What is $EF^2$? $\textbf{(A)}\ \frac{13}{9}\qquad\textbf{(B)}\ \frac{8}{9}\qquad\textbf{(C)}\ \frac{37}{36}\qquad\textbf{(D)}\ \frac{5}{4}\qquad\textbf{(E)}\ \frac{13}{36}$

## Problem 4

What is the smallest value of $k$ for which $$2^{18k} \equiv 76 \mod 100$$ $\textbf{(A)}\ 2\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20$

Invalid username
Login to AoPS