# User:Temperal/The Problem Solver's Resource2

The Problem Solver's Resource
 Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 2.

## Exponentials and Logarithms

This is just a quick review of logarithms and exponents; it's elementary content.

### Definitions

• Exponentials: Do you really need this one? If $a=\underbrace{b*b*b*...*b}_{x\text{ }b'\text{s}}$, then $a=b^x$
• Logarithms: If $b^a=x$, $\log_b{x}=a$. Note that a logarithm in base e, i.e. $\log_e{x}=a$ is notated as $\ln{x}=a$, or the natural logarithm of x. If no base is specified, then a logarithm is assumed to be in base 10.

### Rules of Exponentiation and Logarithms

$a^x \cdot a^y=a^{x+y}$

$(a^x)^y=a^{xy}$

$\frac{a^x}{a^y}=a^{x-y}$

$a^0=1$, where $a\ne 0$.

$\log_b xy=\log_b x +\log_b y$

$\log_b x^y=y\cdot \log_b x$

$\log_b \frac{x}{y} =\log_b x-\log_b y$

$\log_b a=\frac{1}{\log_a b}$

$\log_b b=1$

$\log_b a=\frac{\log_x a}{\log_x b}$, where x is a constant.

$\log_1 a$ and $\log_0 a$ are undefined.

Invalid username
Login to AoPS