Difference between revisions of "User:Temperal/The Problem Solver's Resource5"

(Theorems and Properties: left, right)
(switch)
Line 4: Line 4:
 
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span>
 
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span>
 
|-  
 
|-  
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 5}}
+
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 7}}
==<span style="font-size:20px; color: blue;">Limits</span>==
+
==<span style="font-size:20px; color: blue;">Combinatorics</span>==
This section covers limits and some other precalculus topics.
+
This section cover combinatorics, and some binomial/multinomial facts.
===Definition===
+
<!-- will fill in later! -->
 +
===Permutations===
 +
The factorial of a number <math>n</math> is <math>n(n-1)(n-2)...(1)</math> or also as <math>\prod_{a=0}^{n-1}(n-a)</math>,and is denoted by <math>n!</math>.
  
*<math>\displaystyle\lim_{x\to n}f(x)</math> is the value that <math>f(x)</math> approaches as <math>x</math> approaches <math>n</math>.
+
Also, <math>0!=1</math>.
  
*<math>\displaystyle\lim_{x\uparrow n}f(x)</math> is the value that <math>f(x)</math> approaches as <math>x</math> approaches <math>n</math> from values of <math>x</math> less than <math>n</math>.
+
The number of ways of arranging <math>n</math> distinct objects in a straight line is <math>n!</math>. This is also known as a permutation, and can be notated <math>\,_{n}P_{r}</math>
  
*<math>\displaystyle\lim_{x\downarrow n}f(x)</math> is the value that <math>f(x)</math> approaches as <math>x</math> approaches <math>n</math> from values of <math>x</math> more than <math>n</math>.
+
===Combinations===
 +
The number of ways of choosing <math>n</math> objects from a set of <math>r</math> objects is <math>\frac{n!}{r!(n-r)!}</math>, which is notated as either <math>\,_{n}C_{r}</math> or <math>\binom{n}{r}</math>. (The latter notation is also known as taking the binomial coefficient.
  
*If <math>\displaystyle\lim_{x\to n}f(x)=f(n)</math>, then <math>f(x)</math> is said to be continuous in <math>n</math>.
+
===Binomials and Multinomials===
 +
*Binomial Theorem: <math>(x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r</math>
 +
*Multinomial Coefficients: The number of ways of ordering <math>n</math> objects when <math>r_1</math> of them are of one type, <math>r_2</math> of them are of a second type, ... and <math>r_s</math> of them of another type is <math>\frac{n!}{r_1!r_2!...r_s!}</math>
 +
*Multinomial Theorem: <math>(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s</math>. The summation is taken over all sums <math>\sum_{i=1}^{s}r_i</math> so that <math>\sum_{i=1}^{s}r_i=n</math>.
  
===Theorems and Properties===
+
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]]
 
 
The statement <math>\lim_{x\to n}f(x)=L</math> is equivalent to: given a positive number <math>\epsilon</math>, there is a positive number <math>\gamma</math> such that <math>0<|x-n|<\gamma\Rightarrow |f(x)-L|<\epsilon</math>.
 
 
 
Let <math>f</math> and <math>g</math> be real functions. Then:
 
*<math>\lim(f+g)(x)=\lim f(x)+\lim g(x)</math>
 
*<math>\lim(f-g)(x)=\lim f(x)-\lim g(x)</math>
 
*<math>\lim(f\cdot g)(x)=\lim f(x)\cdot\lim g(x)</math>
 
*<math>\lim\left(\frac{f}{g}\right)(x)=\frac{\lim f(x)}{\lim g(x)}</math>
 
 
 
Suppose <math>f(x)</math> is between <math>g(x)</math> and <math>h(x)</math> for all <math>x</math> in the neighborhood of <math>S</math>. If <math>g</math> and <math>h</math> approach some common limit L as <math>x</math> approaches <math>S</math>, then <math>\lim_{x\to S}f(x)=L</math>.
 
 
 
 
 
[[User:Temperal/The Problem Solver's Resource4|Back to page 4]] | [[User:Temperal/The Problem Solver's Resource6|Continue to page 6]]
 
 
|}<br /><br />
 
|}<br /><br />

Revision as of 11:55, 6 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 7.

Combinatorics

This section cover combinatorics, and some binomial/multinomial facts.

Permutations

The factorial of a number $n$ is $n(n-1)(n-2)...(1)$ or also as $\prod_{a=0}^{n-1}(n-a)$,and is denoted by $n!$.

Also, $0!=1$.

The number of ways of arranging $n$ distinct objects in a straight line is $n!$. This is also known as a permutation, and can be notated $\,_{n}P_{r}$

Combinations

The number of ways of choosing $n$ objects from a set of $r$ objects is $\frac{n!}{r!(n-r)!}$, which is notated as either $\,_{n}C_{r}$ or $\binom{n}{r}$. (The latter notation is also known as taking the binomial coefficient.

Binomials and Multinomials

  • Binomial Theorem: $(x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r$
  • Multinomial Coefficients: The number of ways of ordering $n$ objects when $r_1$ of them are of one type, $r_2$ of them are of a second type, ... and $r_s$ of them of another type is $\frac{n!}{r_1!r_2!...r_s!}$
  • Multinomial Theorem: $(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s$. The summation is taken over all sums $\sum_{i=1}^{s}r_i$ so that $\sum_{i=1}^{s}r_i=n$.

Back to page 6 | Continue to page 8



Invalid username
Login to AoPS