Difference between revisions of "User:Temperal/The Problem Solver's Resource6"

(source)
(link)
Line 6: Line 6:
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 6}}
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 6}}
 
==<span style="font-size:20px; color: blue;">Modulos</span>==
 
==<span style="font-size:20px; color: blue;">Modulos</span>==
 
+
This section covers [[modulos]].
 
==Definition==
 
==Definition==
 
*<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount.
 
*<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount.

Revision as of 21:57, 5 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 6.

Modulos

This section covers modulos.

Definition

  • $n\equiv a\pmod{b}$ if $n$ is the remainder when $a$ is divided by $b$ to give an integral amount.

Special Notation

Occasionally, if two equivalent expressions are both modulated by the same number, the entire equation will be followed by the modulo.

Properties

For any number there will be only one congruent number modulo $m$ between $0$ and $m-1$.

If $a\equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $(a+c) \equiv (b+d) \pmod {m}$.


$a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}$

$a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m}$

$a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m}$

Useful Theorems

Fermat's Little Theorem:For a prime $p$ and a number $a$ such that $a\ne{p}$, $a^{p-1}\equiv 1 \pmod{p}$.

Wilson's Theorem: For a prime $p$, $(p-1)! \equiv -1 \pmod p$.


Back to page 5 | Continue to page 7