Difference between revisions of "User:Temperal/The Problem Solver's Resource8"

(Minkowsky's Inequality: i)
(complete)
Line 5: Line 5:
 
|-  
 
|-  
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 8}}
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 8}}
==<span style="font-size:20px; color: blue;">Intermediate Number Theory</span>==
+
==<span style="font-size:20px; color: blue;">Geometry</span>==
These are more complex number theory theorems that may turn up on the USAMO or Pre-Olympiad tests.
+
This is the geometry page. Of course, there is much too much to cover here, but this will review the basics.
This will also cover diverging and converging series, and other such calculus-related topics.
 
 
 
===Power Mean Inequality===
 
 
 
Take a set of functions <math>m_j(a) = \left({\frac{\sum a_i^j}{n}}\right)^{1/j}</math>.
 
 
 
Note that <math>m_0</math> does not exist. The geometric mean is <math>m_0 = \lim_{k \to 0} m_k</math>.
 
For non-negative real numbers <math>a_1,a_2,\ldots,a_n</math>, the following holds:
 
 
 
<math>m_x \le m_y</math> for reals <math>x<y</math>.
 
 
 
, if <math>m_2</math> is the quadratic mean, <math>m_1</math> is the arithmetic mean, <math>m_0</math> the geometric mean, and <math>m_{-1}</math> the harmonic mean.
 
 
 
===Chebyshev's Inequality===
 
 
 
Given real numbers <math>a_1 \ge a_2 \ge ... \ge a_n \ge 0</math> and <math>b_1 \ge b_2 \ge ... \ge b_n</math>, we have
 
 
 
<math>{\frac{\sum a_ib_i}{n}} \ge {\frac{\sum a_i}{n}}{\frac{\sum b_i}{n}}</math>.
 
 
 
===Minkowski's Inequality===
 
 
 
Given real numbers <math>a_1,a_2,...,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following holds:
 
 
 
<math>\sqrt{\sum a_i^2} + \sqrt{\sum b_i^2} \ge \sqrt{\sum (a_i+b_i)^2}</math>
 
 
 
===Nesbitt's Inequality===
 
 
 
For all positive real numbers <math>a</math>, <math>b</math> and <math>c</math>, the following holds:
 
 
 
<math>{\frac{a}{b+c}} + {\frac{b}{c+a}} + {\frac{c}{a+b}} \ge {\frac{3}{2}}</math>.
 
 
 
===Schur's inequality===
 
 
 
Given positive real numbers <math>a,b,c</math> and real <math>r</math>, the following holds:
 
 
 
<math>a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)\ge 0</math>.
 
 
 
===Fermat-Euler Identitity===
 
If <math>gcd(a,m)=1</math>, then <math>a^{\phi{m}}\equiv1\pmod{m}</math>, where <math>\phi{m}</math> is the number of relatively prime  numbers lower than <math>m</math>.
 
 
 
===Gauss's Theorem===
 
If <math>a|bc</math> and <math>(a,b) = 1</math>, then <math>a|c</math>.
 
 
 
===Diverging-Converging Theorem===
 
A series <math>\sum_{i=0}^{\infty}S_i</math> converges iff <math>\lim S_i=0</math>.
 
 
 
===Errata===
 
All quadratic residues are <math>0</math> or <math>1\pmod{4}</math>and  <math>0</math>, <math>1</math>, or <math>4</math> <math>\pmod{8}</math>.
 
 
 
  
 +
This will be completed later.
 
[[User:Temperal/The Problem Solver's Resource7|Back to page 7]] | [[User:Temperal/The Problem Solver's Resource9|Continue to page 9]]
 
[[User:Temperal/The Problem Solver's Resource7|Back to page 7]] | [[User:Temperal/The Problem Solver's Resource9|Continue to page 9]]
 
|}<br /><br />
 
|}<br /><br />

Revision as of 12:54, 23 November 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 8.

Geometry

This is the geometry page. Of course, there is much too much to cover here, but this will review the basics.

This will be completed later. Back to page 7 | Continue to page 9