Difference between revisions of "User talk:Mathboy100"

(Created page with "==THIS IS MY TALK.== Not yours. ==SO RESPECT THE RULES.== jkjkjk just like chat here and share problems i guess")
 
m (SO RESPECT THE RULES.)
Line 4: Line 4:
 
jkjkjk
 
jkjkjk
 
just like chat here and share problems i guess
 
just like chat here and share problems i guess
 +
 +
Good we can share problems!
 +
 +
<math>\Delta ABC</math> is an isosceles triangle where <math>CB=CA</math>. Let the circumcircle of <math>\Delta ABC</math> be <math>\Omega</math>. Then, there is a point <math>E</math> and a point <math>D</math> on circle <math>\Omega</math> such that <math>AD</math> and <math>AB</math> trisects <math>\angle CAE</math> and <math>BE<AE</math>, and point <math>D</math> lies on minor arc <math>BC</math>. Point <math>F</math> is chosen on segment <math>AD</math> such that <math>CF</math> is one of the altitudes of <math>\Delta ACD</math>. Ray <math>CF</math> intersects <math>\Omega</math> at point <math>G</math> (not <math>C</math>) and is extended past <math>G</math> to point <math>I</math>, and <math>IG=AC</math>. Point <math>H</math> is also on <math>\Omega</math> and <math>AH=GI<HB</math>. Let the perpendicular bisector of <math>BC</math> and <math>AC</math> intersect at <math>O</math>. Let <math>J</math> be a point such that <math>OJ</math> is both equal to <math>OA</math> (in length) and is perpendicular to <math>IJ</math> and <math>J</math> is on the same side of <math>CI</math> as <math>A</math>. Let <math>O’</math> be the reflection of point <math>O</math> over line <math>IJ</math>. There exist a circle <math>\Omega_1</math> centered at <math>I</math> and tangent to <math>\Omega</math> at point <math>K</math>. <math>IO’</math> intersect <math>\Omega_1</math> at <math>L</math>. Now suppose <math>O’G</math> intersects <math>\Omega</math> at one distinct point, and <math>O’, G</math>, and <math>K</math> are collinear. If <math>IG^2+IG \cdot GC=\frac{3}{4} IK^2 + \frac{3}{2} IK \cdot O’L + \frac{3}{4} O’L^2</math>, then <math>\frac{EH}{BH}</math> can be expressed in the form <math>\frac{\sqrt{b}}{a} (\sqrt{c} + d)</math>, where <math>b</math> and <math>c</math> are not divisible by the squares of any prime. Find <math>a^2+b^2+c^2+d^2+abcd</math>.
 +
 +
Someone mind making a diagram for this?
 +
 +
~[[Ddk001]]

Revision as of 19:18, 28 January 2024

THIS IS MY TALK.

Not yours.

SO RESPECT THE RULES.

jkjkjk just like chat here and share problems i guess

Good we can share problems!

$\Delta ABC$ is an isosceles triangle where $CB=CA$. Let the circumcircle of $\Delta ABC$ be $\Omega$. Then, there is a point $E$ and a point $D$ on circle $\Omega$ such that $AD$ and $AB$ trisects $\angle CAE$ and $BE<AE$, and point $D$ lies on minor arc $BC$. Point $F$ is chosen on segment $AD$ such that $CF$ is one of the altitudes of $\Delta ACD$. Ray $CF$ intersects $\Omega$ at point $G$ (not $C$) and is extended past $G$ to point $I$, and $IG=AC$. Point $H$ is also on $\Omega$ and $AH=GI<HB$. Let the perpendicular bisector of $BC$ and $AC$ intersect at $O$. Let $J$ be a point such that $OJ$ is both equal to $OA$ (in length) and is perpendicular to $IJ$ and $J$ is on the same side of $CI$ as $A$. Let $O’$ be the reflection of point $O$ over line $IJ$. There exist a circle $\Omega_1$ centered at $I$ and tangent to $\Omega$ at point $K$. $IO’$ intersect $\Omega_1$ at $L$. Now suppose $O’G$ intersects $\Omega$ at one distinct point, and $O’, G$, and $K$ are collinear. If $IG^2+IG \cdot GC=\frac{3}{4} IK^2 + \frac{3}{2} IK \cdot O’L + \frac{3}{4} O’L^2$, then $\frac{EH}{BH}$ can be expressed in the form $\frac{\sqrt{b}}{a} (\sqrt{c} + d)$, where $b$ and $c$ are not divisible by the squares of any prime. Find $a^2+b^2+c^2+d^2+abcd$.

Someone mind making a diagram for this?

~Ddk001