Question on Balkan SL

by Fmimch, Apr 30, 2025, 12:13 AM

Does anyone know where to find the Balkan MO Shortlist 2024? If you have the file, could you send in this thread? Thank you!

hard inequalities

by pennypc123456789, Apr 30, 2025, 12:12 AM

Given $x,y,z$ be the positive real number. Prove that

$\frac{2xy}{\sqrt{2xy(x^2+y^2)}} + \frac{2yz}{\sqrt{2yz(y^2+z^2)}} + \frac{2xz}{\sqrt{2xz(x^2+z^2)}} \le \frac{2(x^2+y^2+z^2) + xy+yz+xz}{x^2+y^2+z^2}$

Functional Geometry

by GreekIdiot, Apr 27, 2025, 1:08 PM

Let $f: \pi \to \mathbb R$ be a function from the Euclidean plane to the real numbers such that $f(A)+f(B)+f(C)=f(O)+f(G)+f(H)$ for any acute triangle $\Delta ABC$ with circumcenter $O$, centroid $G$ and orthocenter $H$. Prove that $f$ is constant.
This post has been edited 1 time. Last edited by GreekIdiot, Apr 27, 2025, 1:08 PM

2^x+3^x = yx^2

by truongphatt2668, Apr 22, 2025, 3:38 PM

Prove that the following equation has infinite integer solutions:
$$2^x+3^x = yx^2$$

Easy Geometry Problem in Taiwan TST

by chengbilly, Mar 6, 2025, 5:05 AM

Suppose $I$ and $I_A$ are the incenter and the $A$-excenter of triangle $ABC$, respectively.
Let $M$ be the midpoint of arc $BAC$ on the circumcircle, and $D$ be the foot of the
perpendicular from $I_A$ to $BC$. The line $MI$ intersects the circumcircle again at $T$ . For
any point $X$ on the circumcircle of triangle $ABC$, let $XT$ intersect $BC$ at $Y$ . Prove
that $A, D, X, Y$ are concyclic.

Easy Combinatorial Game Problem in Taiwan TST

by chengbilly, Mar 5, 2025, 5:05 AM

Alice and Bob are playing game on an $n \times n$ grid. Alice goes first, and they take turns drawing a black point from the coordinate set
\[\{(i, j) \mid i, j \in \mathbb{N}, 1 \leq i, j \leq n\}\]There is a constraint that the distance between any two black points cannot be an integer. The player who cannot draw a black point loses. Find all integers $n$ such that Alice has a winning strategy.

Proposed by chengbilly
This post has been edited 1 time. Last edited by chengbilly, Mar 5, 2025, 5:09 AM
L

Cute R+ fe

by Aryan-23, Jan 27, 2024, 2:57 PM

Find all functions $f\colon \mathbb R^+ \mapsto \mathbb R^+$, such that for all positive reals $x,y$, the following is true:

$$xf(1+xf(y))= f\left(f(x) + \frac 1y\right)$$
Kazi Aryan Amin
This post has been edited 1 time. Last edited by Aryan-23, Jan 27, 2024, 2:58 PM

Interesting Function

by Kei0923, Jan 9, 2024, 7:36 AM

Function $f:\mathbb{Z}_{\geq 0}\rightarrow\mathbb{Z}$ satisfies
$$f(m+n)^2=f(m|f(n)|)+f(n^2)$$for any non-negative integers $m$ and $n$. Determine the number of possible sets of integers $\{f(0), f(1), \dots, f(2024)\}$.
This post has been edited 1 time. Last edited by Kei0923, Jan 9, 2024, 8:41 AM

Overlapping game

by Kei0923, Feb 11, 2023, 11:03 AM

On $5\times 5$ squares, we cover the area with several S-Tetrominos (=Z-Tetrominos) along the square so that in every square, there are two or fewer tiles covering that (tiles can be overlap). Find the maximum possible number of squares covered by at least one tile.
This post has been edited 1 time. Last edited by Kei0923, Feb 11, 2023, 11:22 AM

An easy ineq; ISI BS 2011, P1

by Sayan, Mar 31, 2013, 4:15 AM

Let $x_1, x_2, \cdots , x_n$ be positive reals with $x_1+x_2+\cdots+x_n=1$. Then show that
\[\sum_{i=1}^n \frac{x_i}{2-x_i} \ge \frac{n}{2n-1}\]
This post has been edited 1 time. Last edited by Sayan, Mar 31, 2013, 5:32 AM

Old material is mostly Asymptote, new material is calculator programming

avatar

sonone
Archives
+ April 2023
+ August 2022
+ April 2021
+ August 2020
Shouts
Submit
  • I still exist as well.

    by G.G.Otto, Aug 11, 2023, 2:44 AM

  • hello I'm still here lol

    by player01, Aug 6, 2022, 6:24 PM

  • [REVIVAL] I will start posting more calculator relating posts very soon. Even though school has been busy, I have been programming my calculators a decent amount, so I have a lot to share...

    by sonone, Feb 18, 2022, 10:29 PM

  • wow its been like 2.5 years since geo class

    by pieMax2713, Feb 4, 2022, 8:38 PM

  • @violin21, I've been very busy with school lately and haven't been able to add another lesson. I will when i get a free moment

    by sonone, Aug 19, 2021, 12:45 AM

  • ORZ CODER

    by samrocksnature, Aug 9, 2021, 9:57 PM

  • Could you make more Asymptote lessons on your "How to do Asymptote" blog?

    by violin21, Aug 9, 2021, 7:26 PM

  • You can take it, just C&P the CSS into your CSS area

    by sonone, Apr 17, 2021, 10:08 PM

  • how can we take the CSS if we have permission to not take it?

    by GoogleNebula, Apr 17, 2021, 5:22 PM

  • That is awesome!

    by sonone, Apr 15, 2021, 10:09 PM

  • I modified your dodecahedron and got:
    [asy]
    import three;
    import solids;
    size(300);
    currentprojection=orthographic(0,1.3,1.2);
    light(0,5,10);

    real phi=(sqrt(6)+1)/3;
    real g=(phi-1)/2;
    real s=1/2;
    real a=sqrt(1-phi*phi/4-g*g)+phi/2;

    triple[] d;
    d[0]=(phi

    by Andrew2019, Mar 26, 2021, 12:15 AM

  • Not too many, just changing the color here and there. I really like your CSS!

    by sonone, Feb 2, 2021, 10:35 AM

  • Nice!

    I see you're making changes to the CSS. :)

    by G.G.Otto, Feb 1, 2021, 9:26 PM

  • I'm learning Java now!

    by sonone, Feb 1, 2021, 5:56 PM

  • And I took part of it from CaptainFlint and then added a ton of modifications. ;)

    by G.G.Otto, Dec 1, 2020, 8:56 AM

98 shouts
Tags
About Owner
  • Posts: 2106
  • Joined: Aug 20, 2016
Blog Stats
  • Blog created: Mar 28, 2020
  • Total entries: 61
  • Total visits: 4964
  • Total comments: 146
Search Blog
a