# 1959 IMO Problems/Problem 1

## Problem

Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number $n$.

## Solutions

### Solution

Denoting the greatest common divisor of $a, b$ as $(a,b)$, we use the Euclidean algorithm: $$(21n+4, 14n+3) = (7n+1, 14n+3) = (7n+1, 1) = 1$$

It follows that $\frac{21n+4}{14n+3}$ is irreducible. Q.E.D.

### Solution 2

Assume that $\dfrac{14n+3}{21n+4}$ is a reducible fraction where $p$ is a divisor of both the numerator and the denominator: $14n+3\equiv 0\pmod{p} \implies 42n+9\equiv 0\pmod{p}$ $21n+4\equiv 0\pmod{p} \implies 42n+8\equiv 0\pmod{p}$

Subtracting the second equation from the first equation we get $1\equiv 0\pmod{p}$ which is clearly absurd.

Hence $\frac{21n+4}{14n+3}$ is irreducible. Q.E.D.

### Solution 3

Assume that $\dfrac{14n+3}{21n+4}$ is a reducible fraction.

If a certain fraction $\dfrac{a}{b}$ is reducible, then the fraction $\dfrac{2a}{3b}$ is reducible, too. In this case, $\dfrac{2a}{3b} = \dfrac{42n+8}{42n+9}$.

This fraction consists of two consecutives numbers, which never share any factor. So in this case, $\dfrac{2a}{3b}$ is irreducible, which is absurd.

Hence $\frac{21n+4}{14n+3}$ is irreducible. Q.E.D.

### Solution 4

We notice that: $\frac{21n+4}{14n+3} = \frac{(14n+3)+(7n+1)}{14n+3} = 1+\frac{7n+1}{14n+3}$

So it follows that $7n+1$ and $14n+3$ must be coprime for every natural number $n$ for the fraction to be irreducible. Now the problem simplifies to proving $\frac{7n+1}{14n+3}$ irreducible. We re-write this fraction as: $\frac{7n+1}{(7n+1)+(7n+1) + 1} = \frac{7n+1}{2(7n+1)+1}$

Since the denominator $2(7n+1) + 1$ differs from a multiple of the numerator $7n+1$ by 1, the numerator and the denominator must be relatively prime natural numbers. Hence it follows that $\frac{21n+4}{14n+3}$ is irreducible.

Q.E.D

### Solution 5

By Bezout's Lemma, $3 \cdot (14n+3) - 2 \cdot (21n + 4) = 1$, so the GCD of the numerator and denominator is $1$ and the fraction is irreducible.