1966 IMO Problems/Problem 5
Problem
Solve the system of equations
where are four different real numbers.
Solution
Take a1 > a2 > a3 > a4. Subtracting the equation for i=2 from that for i=1 and dividing by (a1 - a2) we get:
- x1 + x2 + x3 + x4 = 0.
Subtracting the equation for i=4 from that for i=3 and dividing by (a3 - a4) we get:
- x1 - x2 - x3 + x4 = 0.
Hence x1 = x4. Subtracting the equation for i=3 from that for i=2 and dividing by (a2 - a3) we get:
- x1 - x2 + x3 + x4 = 0.
Hence x2 = x3 = 0, and x1 = x4 = 1/(a1 - a4).
See also
1966 IMO (Problems) • Resources) | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |