# 1967 AHSME Problems/Problem 16

## Problem

Let the product $(12)(15)(16)$, each factor written in base $b$, equals $3146$ in base $b$. Let $s=12+15+16$, each term expressed in base $b$. Then $s$, in base $b$, is $\textbf{(A)}\ 43\qquad \textbf{(B)}\ 44\qquad \textbf{(C)}\ 45\qquad \textbf{(D)}\ 46\qquad \textbf{(E)}\ 47$

## Solution

Converting everything into base $10$, we have $(b + 2)(b+5)(b+6) = 3b^3 + b^2 + 4b + 6$. Looking ahead, the constant term of the polynomial will be $2*5*6 -6 = 54$. By the Rational Root Theorem, the only possible integer roots are $1, 2, 3, 6, 9, 18, 27, 54$. Bases $1, 2, 3, 6$ do not have a $6$ as a digit. Testing $b=9$ gives a solution that works.

Therefore, we are working in base $9$. Adding the units place in base $9$, $2 + 5 + 6 = 14_9$, so we carry the $1$ to get a total of $44_9$, which is option $\fbox{B}$.

## See also

 1967 AHSME (Problems • Answer Key • Resources) Preceded byProblem 15 Followed byProblem 17 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS