1972 AHSME Problems/Problem 18


Let $ABCD$ be a trapezoid with the measure of base $AB$ twice that of base $DC$, and let $E$ be the point of intersection of the diagonals. If the measure of diagonal $AC$ is $11$, then that of segment $EC$ is equal to

$\textbf{(A) }3\textstyle\frac{2}{3}\qquad \textbf{(B) }3\frac{3}{4}\qquad \textbf{(C) }4\qquad \textbf{(D) }3\frac{1}{2}\qquad \textbf{(E) }3$


We begin with a diagram:

[asy] pair A, B, C, D, E;  A = (0, 0); B = (8, 0); C = (7, 4); D = (3, 4); E = intersectionpoint(A--C, B--D);  draw(A--B--C--D--cycle); draw(A--C); draw(B--D);  label("$A$", A, W); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, 3W); label("$11$", midpoint(A--C), 2S); [/asy]

The bases of a trapezoid are parallel by definition, so $\angle EDC$ and $\angle EBA$ are alternate interior angles, and therefore equal. We have the same setup with $\angle ECD$ and $\angle EAB$, meaning that $\triangle ABE \sim \triangle CDE$ by AA Similarity. We could've also used the fact that $\angle BEA$ and $\angle DEC$ are vertical angles.

With this information, we can setup a ratio of corresponding sides: \[\frac{AB}{CD} = \frac{AE}{CE} \implies \frac{2CD}{CD} = \frac{11 - CE}{CE}.\] And simplify from there: \begin{align*} \frac{2CD}{CD} &= \frac{11 - CE}{CE} \\ 2 &= \frac{11 - CE}{CE} \\ 2CE &= 11 - CE \\ 3CE &= 11 \\ CE &= \frac{11}{3} = 3 \frac{2}{3}. \end{align*} Therefore, our answer is $\boxed{\textbf{(A) }3\textstyle\frac{2}{3}.}$

Invalid username
Login to AoPS