# 1975 IMO Problems/Problem 2

## Problem

Let $a_1, a_2, a_3, \cdots$ be an infinite increasing sequence of positive integers. Prove that for every $p \geq 1$ there are infinitely many $a_m$ which can be written in the form $$a_m = xa_p + ya_q$$with $x, y$ positive integers and $q > p$.

## Solution

If we can find $p\ne q$ such that $(a_p,a_q)=1$, we're done: every sufficiently large positive integer $n$ can be written in the form $xa_p+ya_q,\ x,y\in\mathbb N$. We can thus assume there are no two such $p\ne q$. We now prove the assertion by induction on the first term of the sequence, $a_1$. The base step is basically proven, since if $a_1=1$ we can take $p=1$ and any $q>1$ we want. There must be a prime divisor $u|a_1$ which divides infinitely many terms of the sequence, which form some subsequence $(a_{k_n})_{n\ge 1},\ k_1=1$. Now apply the induction hypothesis to the sequence $\left(\frac{a_{k_n}}u\right)_{n\ge 1}$.

The above solution was posted and copyrighted by grobber. The original thread for this problem can be found here: