1977 AHSME Problems/Problem 18

Problem 18

If $y=(\log_23)(\log_34)\cdots(\log_n[n+1])\cdots(\log_{31}32)$ then

$\textbf{(A) }4<y<5\qquad \textbf{(B) }y=5\qquad \textbf{(C) }5<y<6\qquad \textbf{(D) }y=6\qquad \\ \textbf{(E) }6<y<7$


Solution

Solution by e_power_pi_times_i


Note that $\log_{a}b = \dfrac{\log{b}}{\log{a}}$. Then $y=(\dfrac{\log3}{\log2})(\dfrac{\log4}{\log3})\cdots(\dfrac{\log32}{\log31}) = \dfrac{\log32}{\log2} = \log_232 = \boxed{\text{(B) }y=5}$.