1978 AHSME Problems/Problem 28

Problem 28

[asy] size(100); import cse5; pathpen=black; pair A1=(0,0), A2=(1,0), A3=(0.5,sqrt(3)/2); D(MP("A_1",A1)--MP("A_2",A2)--MP("A_3",A3,N)--cycle); pair A4=(A1+A2)/2, A5 = (A3+A2)/2, A6 = (A4+A3)/2; D(MP("A_4",A4,S)--MP("A_6",A6,W)--A3); D(A6--MP("A_5",A5,NE)--A4); //Credit to chezbgone2 for the diagram [/asy]


If $\triangle A_1A_2A_3$ is equilateral and $A_{n+3}$ is the midpoint of line segment $A_nA_{n+1}$ for all positive integers $n$, then the measure of $\measuredangle A_{44}A_{45}A_{43}$ equals

$\textbf{(A) }30^\circ\qquad \textbf{(B) }45^\circ\qquad \textbf{(C) }60^\circ\qquad \textbf{(D) }90^\circ\qquad  \textbf{(E) }120^\circ$

Solution

$\fbox{E}$