# 1985 AHSME Problems/Problem 21

## Problem

How many integers $x$ satisfy the equation $$\left(x^2-x-1\right)^{x+2} = 1?$$

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \ } 4 \qquad \mathrm{(D) \ } 5 \qquad \mathrm{(E) \ }\text{none of these}$

## Solution

We recall that for real numbers $a$ and $b$, there are exactly $3$ ways in which we can have $a^b = 1$, namely $a = 1$; $b = 0$ and $a \neq 0$; or $a = -1$ and $b$ is an even integer.

The first case therefore gives \begin{align*}x^2-x-1 = 1 &\iff x^2-x-2 = 0 \\&\iff (x-2)(x+1) = 0 \\&\iff x = 2 \text{ or } x = -1.\end{align*}

Similarly, the second case gives $x+2 = 0$, i.e. $x = -2$, and this indeed gives $x^2-x-1 = 4+2-1 = 5 \neq 0$, so $x = -2$ is a further valid solution.

Lastly, for the third case, we have \begin{align*}x^2-x-1 = -1 &\iff x^2-x = 0 \\&\iff x(x-1) = 0 \\&\iff x = 0 \text{ or } x = 1,\end{align*} but $x = 1$ would give $x+2 = 3$, which is odd, whereas $x = 0$ gives $x+2 = 2$, which is even. Therefore, this case gives only one further solution, namely $x = 0$.

Accordingly, the possible values of $x = -2$, $-1$, $0$, or $2$, yielding a total of $\boxed{\text{(C)} \ 4}$ solutions.

 1985 AHSME (Problems • Answer Key • Resources) Preceded byProblem 20 Followed byProblem 22 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions