# 1988 IMO Problems/Problem 5

## Problem

In a right-angled triangle $ABC$ let $AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ABD, ACD$ intersect the sides $AB, AC$ at the points $K,L$ respectively. If $E$ and $E_1$ dnote the areas of triangles $ABC$ and $AKL$ respectively, show that $$\frac {E}{E_1} \geq 2.$$

## Solution

Lemma: Through the incenter $I$ of $\triangle{ABC}$ draw a line that meets the sides $AB$ and $AC$ at $P$ and $Q$, then: $$\frac{AB}{AP} \cdot AC + \frac{AC}{AQ} \cdot AB = AB+BC+AC$$ Proof of the lemma: Consider the general case: $M$ is any point on side $BC$ and $PQ$ is a line cutting AB, AM, AC at P, N, Q. Then: $\frac{AM}{AN}=\frac{S_{APMQ}}{\triangle{APQ}}=\frac{\triangle{APM}+\triangle{AQM}}{\triangle{PQA}}=\frac{\frac{AP}{AB}\triangle{ABM}+\frac{AQ}{AC}\triangle{ACM}}{\frac{AP\cdot AQ}{AB \cdot AC}}=$ $=\frac{AC}{AQ}\cdot \frac{BM}{BC}+\frac{AB}{AP}\cdot \frac{CM}{BC}$

If $N$ is the incentre then $\frac{AM}{AN}=\frac{AB+BC+CA}{AB+AC}$, $\frac{BM}{BC}=\frac{AB}{AB+AC}$ and $\frac{CM}{BC}=\frac{AC}{AC+AB}$. Plug them in we get: $$\frac{AB}{AP} \cdot AC + \frac{AC}{AQ} \cdot AB = AB+BC+AC$$

Back to the problem Let $I_1$ and $I_2$ be the areas of $\triangle{ABD}$ and $\triangle{ACD}$ and $E$ be the intersection of $KL$ and $AD$. Thus apply our formula in the two triangles we get: $$\frac{AD}{AE} \cdot AB + \frac{AB}{AK} \cdot AD = AB+BD+AD$$ and $$\frac{AD}{AE} \cdot AC + \frac{AC}{AL} \cdot AD = AC+CD+AD$$ Cancel out the term $\frac{AD}{AE}$, we get: $$\frac{AB+BD+AD-\frac{AB}{AK} \cdot AD }{AC+CD+AD- \frac{AC}{AL} \cdot AD }=\frac{AB}{AC}$$ $$AB \cdot CD + AB \cdot AD - \frac{AB \cdot AC \cdot AD}{AL}=AC \cdot BD+ AC \cdot AD -\frac{AB \cdot AC \cdot AD}{AK}$$ $$AB+AB \cdot \frac{CD}{AD}-\frac{AB \cdot AC}{AL}=AC+ AC \cdot \frac{BD}{AD} - \frac{AB \cdot AC}{AK}$$ $$AB+AC - \frac{AB \cdot AC}{AL}=AB+AC - \frac{AB \cdot AC}{AK}$$ $$\frac{AB \cdot AC}{AK} = \frac{AB \cdot AC}{AL}$$ So we conclude $AK=AL$.

Hence $\angle{AKI_1}=45^o=\angle{ADI_1}$ and $\angle{ALI_2}=45^o=\angle{ADI_2}$, thus $\triangle{AK_1} \cong \triangle{ADI_1}$ and $\triangle{ALI_2} \cong \triangle{ADI_2}$. Thus $AK=AD=AL$. So the area ratio is: $$\frac{E}{E_1}=\frac{AB \cdot AC}{AD^2} = \frac{BC}{AD} =\frac{BD+CD}{\sqrt{BD \cdot CD}}\geq 2$$

This solution was posted and copyrighted by shobber. The original thread for this problem can be found here: 

## See Also

 1988 IMO (Problems) • Resources Preceded byProblem 4 1 • 2 • 3 • 4 • 5 • 6 Followed byProblem 6 All IMO Problems and Solutions
Invalid username
Login to AoPS