1997 PMWC Problems/Problem I11

Problem

A rectangle $ABCD$ is made up of five small congruent rectangles as shown in the given figure. Find the perimeter, in cm, of $ABCD$ if its area is $6750\text{ cm}^2$.

[asy] import cse5; import olympiad; size(4cm); pathpen=black; pair A=(0,0),B=(0,-2.5),C=(3,-2.5),D=(3,0); D(MP("A",A,W)--MP("B",B,W)--MP("C",C,E)--MP("D",D,E)--cycle); D((0,-1.5)--(3,-1.5)); D((1,0)--foot((1,0),(0,-1.5),(3,-1.5))); D((2,0)--foot((2,0),(0,-1.5),(3,-1.5))); D((1.5,-1.5)--(1.5,-2.5));[/asy]

Solution

Let $l$ and $w$ be the length, and width, respectively, of one of the small rectangles.

$3w=2l$

$l=\dfrac{3}{2}w$

$6750= 5lw = \dfrac{15}{2}w^2$

$w=30$

$l=45$

The perimeter of the big rectangle is

$2(w+l)+6w=330$

See Also

1997 PMWC (Problems)
Preceded by
Problem I10
Followed by
Problem I12
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T: 1 2 3 4 5 6 7 8 9 10