2003 AIME I Problems/Problem 9

Problem

An integer between $1000$ and $9999$, inclusive, is called balanced if the sum of its two leftmost digits equals the sum of its two rightmost digits. How many balanced integers are there?

Solution

If the common sum of the first two and last two digits is $n$, such that $1 \leq n \leq 9$, there are $n$ choices for the first two digits and $n + 1$ choices for the second two digits (since zero may not be the first digit). This gives $\sum_{n = 1}^9 n(n + 1) = 330$ balanced numbers. If the common sum of the first two and last two digits is $n$, such that $10 \leq n \leq 18$, there are $19 - n$ choices for both pairs. This gives $\sum_{n = 10}^{18} (19 - n)^2 = \sum_{n = 1}^9 n^2 = 285$ balanced numbers. Thus, there are in total $330 + 285 = \boxed{615}$ balanced numbers.

Both summations may be calculated using the formula for the sum of consecutive squares, namely $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS