# 2007 AMC 10A Problems/Problem 17

## Problem

Suppose that $m$ and $n$ are positive integers such that $75m = n^{3}$. What is the minimum possible value of $m + n$? $\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700$

## Solution $3 \cdot 5^2m$ must be a perfect cube, so each power of a prime in the factorization for $3 \cdot 5^2m$ must be divisible by $3$. Thus the minimum value of $m$ is $3^2 \cdot 5 = 45$, which makes $n = \sqrt{3^3 \cdot 5^3} = 15$. The minimum possible value for the sum of $m$ and $n$ is $\boxed {(D)60}.$

## Solution 2

First, we need to prime factorize $75$. $75$ = $5^2 \cdot 3$. We need $75m$ to be in the form $x^3y^3$. Therefore, the smallest $m$ is $5 \cdot 3^2$. $m$ = 45, and since $5^3 \cdot 3^3 = 15^3$, our answer is $45 + 15$ = $\boxed {(D)60}$

~Arcticturn

## Video Solution

~savannahsolver

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 