# 2008 AMC 12B Problems/Problem 4

## Problem

On circle $O$, points $C$ and $D$ are on the same side of diameter $\overline{AB}$, $\angle AOC = 30^\circ$, and $\angle DOB = 45^\circ$. What is the ratio of the area of the smaller sector $COD$ to the area of the circle? $[asy] unitsize(6mm); defaultpen(linewidth(0.7)+fontsize(8pt)); pair C = 3*dir (30); pair D = 3*dir (135); pair A = 3*dir (0); pair B = 3*dir(180); pair O = (0,0); draw (Circle ((0, 0), 3)); label ("$$C$$", C, NE); label ("$$D$$", D, NW); label ("$$B$$", B, W); label ("$$A$$", A, E); label ("$$O$$", O, S); label ("$$45^\circ$$", (-0.3,0.1), WNW); label ("$$30^\circ$$", (0.5,0.1), ENE); draw (A--B); draw (O--D); draw (O--C); [/asy]$ $\textbf{(A)}\ \frac {2}{9} \qquad \textbf{(B)}\ \frac {1}{4} \qquad \textbf{(C)}\ \frac {5}{18} \qquad \textbf{(D)}\ \frac {7}{24} \qquad \textbf{(E)}\ \frac {3}{10}$

## Solution $\angle COD = \angle AOB - \angle AOC - \angle BOD = 180^\circ - 30^\circ - 45^\circ = 105^\circ$.

Since a circle has $360^\circ$, the desired ratio is $\frac{105^\circ}{360^\circ}=\frac{7}{24} \Rightarrow D$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 