2008 Mock ARML 1 Problems/Problem 6

Problem

Square $ABCD$ has side length $2$. $M$ is the midpoint of $CD$, and $N$ is the midpoint of $BC$. $P$ is on $MN$ such that $N$ is between $M$ and $P$, and $m\angle MAN = m\angle NAP$. Compute the length of $AP$.

Solution

[asy] pointpen=black;pathpen=black+linewidth(0.7); pair A=(0,2), D=(0,0), C=(2,0), B=(2,2), M=(C+D)/2, N=(B+C)/2, P=8/3*(N-M)+M; D(MP("A",A,(0,1))--MP("B",B,(0,1))--MP("C",C)--MP("D",D)--cycle); D(D(MP("M",M))--D(MP("N",N,E))--D(MP("P",P,E)));  D(M--A--N--A--P); D(anglemark(M,A,P)); MP("2",(A+D)/2,W); [/asy]

By the Pythagorean Theorem, $MA = NA = \sqrt{5}$ and $MN = \sqrt{2}$. Let $\theta = \angle MAN = \angle NAP$. By the Law of Cosines on $\triangle MAN$, \[\left(\sqrt{2}\right)^2 = \left(\sqrt{5}\right)^2 + \left(\sqrt{5}\right)^2 - 2 \cdot \left(\sqrt{5}\right) \cdot \left(\sqrt{5}\right) \cos \theta \Longrightarrow \cos \theta = \frac{4}{5}.\] The Law of Cosines on $\triangle NAP$ yields

$NP^2 = AP^2 + \left(\sqrt{5}\right)^2 - 2 \cdot AP \cdot \left(\sqrt{5}\right) \cos \theta = AP^2 - \frac{8}{\sqrt{5}}AP + 5.$

The Angle Bisector Theorem on $\triangle MAP$ yields \[\frac{AP}{NP} = \frac{AM}{MN} = \sqrt{\frac{5}{2}} \Longrightarrow NP = \sqrt{\frac{2}{5}}AP.\] Substituting, \begin{align*} 0 &= 3AP^2 - 8\sqrt{5}AP + 25\\ AP &= \frac{8\sqrt{5} \pm \sqrt{20}}{6} = \boxed{\frac{5\sqrt{5}}{3}}, \sqrt{5}. \end{align*}

See also

2008 Mock ARML 1 (Problems, Source)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8