# 2009 AMC 10B Problems/Problem 9

## Problem

Segment $BD$ and $AE$ intersect at $C$, as shown, $AB=BC=CD=CE$, and $\angle A = \frac 52 \angle B$. What is the degree measure of $\angle D$? $[asy] unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair C=(0,0), Ep=dir(35), D=dir(-35), B=dir(145); pair A=intersectionpoints(Circle(B,1),C--(-1*Ep)); pair[] ds={A,B,C,D,Ep}; dot(ds); draw(A--Ep--D--B--cycle); label("A",A,SW); label("B",B,NW); label("C",C,N); label("E",Ep,E); label("D",D,E); [/asy]$ $\text{(A) } 52.5 \qquad \text{(B) } 55 \qquad \text{(C) } 57.7 \qquad \text{(D) } 60 \qquad \text{(E) } 62.5$

## Solution $\triangle ABC$ is isosceles, hence $\angle ACB = \angle CAB$.

The sum of internal angles of $\triangle ABC$ can now be expressed as $\angle B + \frac 52 \angle B + \frac 52 \angle B = 6\angle B$, hence $\angle B = 30^\circ$, and each of the other two angles is $75^\circ$.

Now we know that $\angle DCE = \angle ACB = 75^\circ$.

Finally, $\triangle CDE$ is isosceles, hence each of the two remaining angles ( $\angle D$ and $\angle E$) is equal to $\frac{180^\circ - 75^\circ}2 = \frac{105^\circ}2 = \boxed{52.5}$.

## Video Solution

~savannahsolver

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 