# 2013 AMC 12A Problems/Problem 22

## Problem

A palindrome is a nonnegative integer number that reads the same forwards and backwards when written in base 10 with no leading zeros. A 6-digit palindrome $n$ is chosen uniformly at random. What is the probability that $\frac{n}{11}$ is also a palindrome? $\textbf{(A)} \ \frac{8}{25} \qquad \textbf{(B)} \ \frac{33}{100} \qquad \textbf{(C)} \ \frac{7}{20} \qquad \textbf{(D)} \ \frac{9}{25} \qquad \textbf{(E)} \ \frac{11}{30}$

## Solution 1

By working backwards, we can multiply 5-digit palindromes $ABCBA$ by $11$, giving a 6-digit palindrome: $\overline{A (A+B) (B+C) (B+C) (A+B) A}$

Note that if $A + B >= 10$ or $B + C >= 10$, then the symmetry will be broken by carried 1s

Simply count the combinations of $(A, B, C)$ for which $A + B < 10$ and $B + C < 10$ $A = 1$ implies $9$ possible $B$ (0 through 8), for each of which there are $10, 9, 8, 7, 6, 5, 4, 3, 2$ possible C, respectively. There are $54$ valid palindromes when $A = 1$ $A = 2$ implies $8$ possible $B$ (0 through 7), for each of which there are $10, 9, 8, 7, 6, 5, 4, 3$ possible C, respectively. There are $52$ valid palindromes when $A = 2$

Following this pattern, the total is $54 + 52 + 49 + 45 + 40 + 34 + 27 + 19 + 10 = 330$

6-digit palindromes are of the form $XYZZYX$, and the first digit cannot be a zero, so there are $9 \cdot 10 \cdot 10 = 900$ combinations of $(X, Y, Z)$

So, the probability is $\frac{330}{900} = \frac{11}{30}$

### Note

You can more easily count the number of triples $(A, B, C)$ by noticing that there are $9 - B$ possible values for $A$ and $10 - B$ possible values for $C$ once $B$ is chosen. Summing over all $B$, the number is $$9\cdot 10 + 8\cdot 9 + \ldots + 1\cdot 2 = 2\left(\binom{2}{2} + \binom{3}{2} + \ldots + \binom{10}{2}\right).$$ By the hockey-stick identity, it is $2\binom{11}{3} = 330$.

~rayfish

## Solution 2

Let the palindrome be the form in the previous solution which is $XYZZYX$. It doesn't matter what $Z$ is because it only affects the middle digit. There are $90$ ways to pick $X$ and $Y$, and the only answer choice with denominator a factor of $90$ is $\boxed{\textbf{(E)} \ \frac{11}{30}}$.

## Video Solution by Richard Rusczyk

~dolphin7

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 