2013 Canadian MO Problems/Problem 3

Problem

Let $G$ be the centroid of a right-angled triangle $ABC$ with $\angle BCA = 90^\circ$. Let $P$ be the point on ray $AG$ such that $\angle CPA = \angle CAB$, and let $Q$ be the point on ray $BG$ such that $\angle CQB = \angle ABC$. Prove that the circumcircles of triangles $AQG$ and $BPG$ meet at a point on side $AB$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.