2013 USAMO Problems/Problem 3


Let $n$ be a positive integer. There are $\tfrac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing $n$ marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration $C$, let $f(C)$ denote the smallest number of operations required to obtain $C$ from the initial configuration. Find the maximum value of $f(C)$, where $C$ varies over all admissible configurations.


This problem needs a solution. If you have a solution for it, please help us out by adding it.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png