2014 AMC 12B Problems/Problem 16
Contents
[hide]Problem
Let be a cubic polynomial with , , and . What is ?
Solution
Let . Plugging in for , we find , and plugging in and for , we obtain the following equations: Adding these two equations together, we get If we plug in and in for , we find that Multiplying the third equation by and adding gives us our desired result, so
Solution 2
If we use Gregory's Triangle, the following happens:
Since this is cubic, the common difference is for the linear level so the string of s are infinite in each direction. If we put a on each side of the original , we can solve for and .
The above shows us that is and is so .
NOTE (not from author): The link you put for gregory's triangle doesn't work so please explain it in your post or find a resource that does work; there isn't much on google.
See also
2014 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.