2014 Canadian MO Problems/Problem 4


The quadrilateral $ABCD$ is inscribed in a circle. The point $P$ lies in the interior of $ABCD$, and $\angle P AB = \angle P BC = \angle P CD = \angle P DA$. The lines $AD$ and $BC$ meet at $Q$, and the lines $AB$ and $CD$ meet at $R$. Prove that the lines $PQ$ and $PR$ form the same angle as the diagonals of $ABCD$.


This problem needs a solution. If you have a solution for it, please help us out by adding it.