# 2021 Fall AMC 10A Problems/Problem 16

## Problem

The graph of $$f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|$$ is symmetric about which of the following? (Here $\lfloor x \rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) }\text{the }y\text{-axis}\qquad \textbf{(B) }\text{the line }x = 1\qquad \textbf{(C) }\text{the origin}\qquad \textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)\qquad \textbf{(E) }\text{the point }(1,0)$

## Solution 1 (Observations)

Note that $$f(1-x)=|\lfloor 1-x\rfloor|-|\lfloor x\rfloor|=-f(x),$$ so $f\left(\frac12+x\right)=-f\left(\frac12-x\right)$.

This means that the graph is symmetric about $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}$.

## Solution 2 (Graphing)

Let $y_1=|\lfloor x \rfloor|$ and $y_2=|\lfloor 1 - x \rfloor|=|\lfloor -(x-1) \rfloor|.$ Note that the graph of $y_2$ is a reflection of the graph of $y_1$ about the $y$-axis, followed by a translation $1$ unit to the right.

The graph of $y_1$ is shown below: $[asy] /* Made by MRENTHUSIASM */ size(250); int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10; //Draws the horizontal gridlines void horizontalLines() { for (int i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (int i = xMin+1; i < xMax; ++i) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (int i = yMin+1; i < yMax; ++i) { draw((-3/16,i)--(3/16,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (int i = xMin+1; i < xMax; ++i) { draw((i,-3/16)--(i,3/16), black+linewidth(1)); } } //Draws and labels coordinate axes void drawLabelAxes() { draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes(); path P[], Q[]; for (int i = 0; i < 9; ++i) { P[i] = (i,i)--(i+1,i); Q[i] = (-i,i+1)--(-i-1,i+1); } draw(P^^Q,red+linewidth(1.25)); for (int i = 0; i < 9; ++i) { dot((i,i),red+linewidth(4)); dot((i+1,i),red+linewidth(0.7),UnFill); dot((-i-1,i+1),red+linewidth(4)); dot((-i,i+1),red+linewidth(0.7),UnFill); } [/asy]$ The graph of $y_2$ is shown below: $[asy] /* Made by MRENTHUSIASM */ size(250); int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10; //Draws the horizontal gridlines void horizontalLines() { for (int i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (int i = xMin+1; i < xMax; ++i) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (int i = yMin+1; i < yMax; ++i) { draw((-3/16,i)--(3/16,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (int i = xMin+1; i < xMax; ++i) { draw((i,-3/16)--(i,3/16), black+linewidth(1)); } } //Draws and labels coordinate axes void drawLabelAxes() { draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes(); path P[], Q[]; for (int i = 0; i < 9; ++i) { P[i] = (i,i)--(i+1,i); Q[i] = (-i,i+1)--(-i-1,i+1); } draw(P^^Q,heavygreen+linewidth(1.25)); for (int i = 0; i < 9; ++i) { dot((i,i),heavygreen+linewidth(0.7),UnFill); dot((i+1,i),heavygreen+linewidth(4)); dot((-i-1,i+1),heavygreen+linewidth(0.7),UnFill); dot((-i,i+1),heavygreen+linewidth(4)); } [/asy]$ The graph of $f(x)=y_1-y_2$ is shown below: $[asy] /* Made by MRENTHUSIASM */ size(250); int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10; //Draws the horizontal gridlines void horizontalLines() { for (int i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (int i = xMin+1; i < xMax; ++i) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (int i = yMin+1; i < yMax; ++i) { draw((-3/16,i)--(3/16,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (int i = xMin+1; i < xMax; ++i) { draw((i,-3/16)--(i,3/16), black+linewidth(1)); } } //Draws and labels coordinate axes void drawLabelAxes() { draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes(); draw((-10,0)--(10,0),mediumblue+linewidth(1.25),"y=|\lfloor x \rfloor|"); for (int i = 0; i > -10; --i) { dot((i,-1),mediumblue+linewidth(4)); } for (int i = 1; i < 10; ++i) { dot((i,1),mediumblue+linewidth(4)); } for (int i = -9; i < 10; ++i) { dot((i,0),mediumblue+linewidth(0.7),UnFill); } [/asy]$

Therefore, the graph of $f(x)$ is symmetric about $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.$

~MRENTHUSIASM

## Solution 3 (Casework)

For all $x\in\mathbb{R}$ and $n\in\mathbb{Z},$ note that:

1. $\lfloor x+n \rfloor = \lfloor x \rfloor + n$ and $\lceil x+n \rceil = \lceil x \rceil + n$
2. $\lfloor -x \rfloor = -\lceil x \rceil$
3. $\lceil x \rceil - \lfloor x \rfloor = \begin{cases} 0 & \mathrm{if} \ x\in\mathbb{Z} \\ 1 & \mathrm{if} \ x\not\in\mathbb{Z} \end{cases}$

We rewrite $f(x)$ as \begin{align*} f(x) &= |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor| \\ &= |\lfloor x \rfloor| - |-\lceil x - 1 \rceil| \\ &= |\lfloor x \rfloor| - |-\lceil x \rceil + 1|. \end{align*} We apply casework to the value of $x:$

1. $x\in\mathbb{Z}^-$
2. It follows that $f(x)=-x-(-x+1)=-1.$

3. $x=0$
4. It follows that $f(x)=0-1=-1.$

5. $x\in\mathbb{Z}^+$
6. It follows that $f(x)=x-(x-1)=1.$

7. $x\not\in\mathbb{Z}$ and $x<0$
8. It follows that $f(x)=-\lfloor x \rfloor - (-\lceil x\rceil+1)=(\lceil x \rceil - \lfloor x \rfloor)-1=0.$

9. $x\not\in\mathbb{Z}$ and $0
10. It follows that $f(x)=0-0=0.$

11. $x\not\in\mathbb{Z}$ and $x>1$
12. It follows that $f(x)=\lfloor x \rfloor - (\lceil x\rceil-1)=(\lfloor x \rfloor - \lceil x \rceil)+1=0.$

Together, we have $$f(x)=\begin{cases} -1 & \mathrm{if} \ x\in\mathbb{Z}^{-}\cup\{0\} \\ 1 & \mathrm{if} \ x\in\mathbb{Z}^{+} \\ 0 & \mathrm{if} \ x\not\in\mathbb{Z} \end{cases},$$ so the graph of $f(x)$ is symmetric about $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.$

Alternatively, we can eliminate $\textbf{(A)}, \textbf{(B)}, \textbf{(C)},$ and $\textbf{(E)}$ once we finish with Case 3. This leaves us with $\textbf{(D)}.$

~MRENTHUSIASM

## Solution 4 (Casework)

Denote $x = a + b$, where $a \in \Bbb Z$ and $b \in \left[ 0 , 1 \right)$. Hence, $a$ is the integer part of $x$ and $b$ is the decimal part of $x$.

Case 1: $b = 0$.

We have \begin{align*} f \left( x \right) & = \left| \lfloor x \rfloor \right| - \left| \lfloor 1 - x \rfloor \right| \\ & = | a | - | 1 - a | \\ & = \left\{ \begin{array}{ll} a - \left( a - 1 \right) & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \\ -1 & \mbox{ if } a = 0 \\ - a - \left( 1 - a \right) & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq -1 \end{array} \right. \\ & = \left\{ \begin{array}{ll} 1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \\ -1 & \mbox{ if } a = 0 \\ -1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq -1 \end{array} \right. \\ & = \left\{ \begin{array}{ll} 1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \geq 1 \\ -1 & \mbox{ if } a \in \Bbb Z \mbox{ and } a \leq 0 \end{array} \right. \end{align*}

Case 2: $b \neq 0$.

We have \begin{align*} f \left( x \right) & = \left| \lfloor x \rfloor \right| - \left| \lfloor 1 - x \rfloor \right| \\ & = | a | - | \lfloor 1 - a - b \rfloor | \\ & = | a | - | \lfloor - a + \left( 1 - b \right) \rfloor | \\ & = | a | - | - a | \\ & = 0 . \end{align*}

Therefore, the graph of $f \left( x \right)$ is symmetric through the point $\left( \frac{1}{2} , 0 \right)$.

Therefore, the answer is $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}$.

~Steven Chen (www.professorchenedu.com)

## Solution 5 (Semi-Fakesolve)

Suppose $x\in \mathbb{Z},$ making the equation equivalent to $f(x) = |x|-|1-x|.$ We consider the cases when $x\in (-\infty, 0), 0, 1, (1, \infty).$

If $x\in (-\infty, 0)$, we have $|x| = -x$ and $|1-x| = 1-x,$ so $f(x) = -x - (1-x) = -1$.

If $x = 0$ or $x = 1$, we trivially get $f(x) = -1$ and $1$ respectively.

If $x\in (1, \infty)$, we have $|x| = x$ and $|1-x| = x - 1$, giving $f(x) = x-(x-1)= 1.$

Since, for all $x\in \mathbb{Z} \leq 0$, $f(x) =-1$ and $x\in \mathbb{Z} \geq 1, f(x) = 1$, we can conclude that it is symmetric across the coordinate pair $$\left(\frac{0 + 1}{2}, \frac{-1 + 1}{2}\right) = \boxed{\textbf{(D)}\ \left(\frac{1}{2}, 0\right)},$$ the midpoint of the "endpoints" of these line segments.

$[asy] size(250); //Credit to MRENTHUSIASM int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10; //Draws the horizontal gridlines void horizontalLines() { for (int i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (int i = xMin+1; i < xMax; ++i) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (int i = yMin+1; i < yMax; ++i) { draw((-3/16,i)--(3/16,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (int i = xMin+1; i < xMax; ++i) { draw((i,-3/16)--(i,3/16), black+linewidth(1)); } } //Draws and labels coordinate axes void drawLabelAxes() { draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes(); for (int i = 0; i > -10; --i) { dot((i,-1),mediumblue+linewidth(4)); } for (int i = 1; i < 10; ++i) { dot((i,1),mediumblue+linewidth(4)); } [/asy]$

Just considering the integers is never a good idea when dealing with any function, especially one with floor functions. However, after dealing with the case "when $x\in \mathbb{Z}$", it becomes apparent that the graph of $f(x)$ is symmetric about $x = \frac{1}{2}$, or more specifically, the point $\left(\frac{1}{2}, 0\right).$

-Benedict T (countmath1)

## Video Solution

~Education, the Study of Everything