# 2021 Fall AMC 10A Problems/Problem 3

## Problem

What is the maximum number of balls of clay of radius $2$ that can completely fit inside a cube of side length $6$ assuming the balls can be reshaped but not compressed before they are packed in the cube?

$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7$

## Solution 1 (Inequality)

The volume of the cube is $V_{\text{cube}}=6^3=216,$ and the volume of a clay ball is $V_{\text{ball}}=\frac43\cdot\pi\cdot2^3=\frac{32}{3}\pi.$

Since the balls can be reshaped but not compressed, the maximum number of balls that can completely fit inside a cube is $$\left\lfloor\frac{V_{\text{cube}}}{V_{\text{ball}}}\right\rfloor=\left\lfloor\frac{81}{4\pi}\right\rfloor.$$ Approximating with $\pi\approx3.14,$ we have $12<4\pi<13,$ or $\left\lfloor\frac{81}{13}\right\rfloor \leq \left\lfloor\frac{81}{4\pi}\right\rfloor \leq \left\lfloor\frac{81}{12}\right\rfloor.$ We simplify to get $$6 \leq \left\lfloor\frac{81}{4\pi}\right\rfloor \leq 6,$$ from which $\left\lfloor\frac{81}{4\pi}\right\rfloor=\boxed{\textbf{(D) }6}.$

~NH14 ~MRENTHUSIASM

## Solution 2 (Inequality)

As shown in Solution 1, we conclude that the maximum number of balls that can completely fit inside a cube is $\left\lfloor\frac{81}{4\pi}\right\rfloor.$

By an underestimation $\pi\approx3,$ we have $4\pi>12,$ or $\frac{81}{4\pi}<6\frac34.$

By an overestimation $\pi\approx\frac{22}{7},$ we have $4\pi<\frac{88}{7},$ or $\frac{81}{4\pi}>6\frac{39}{88}.$

Together, we get $$6 < 6\frac{39}{88} < \frac{81}{4\pi} < 6\frac34 < 7,$$ from which $\left\lfloor\frac{81}{4\pi}\right\rfloor=\boxed{\textbf{(D) }6}.$

~MRENTHUSIASM

## Solution 3 (Approximation)

As shown in Solution 1, we conclude that the maximum number of balls that can completely fit inside a cube is $\left\lfloor\frac{81}{4\pi}\right\rfloor.$

Approximating with $\pi\approx3,$ we have $\frac{81}{4\pi}\approx6\frac34.$ Since $\pi$ is about $5\%$ greater than $3,$ it is safe to claim that $\left\lfloor\frac{81}{4\pi}\right\rfloor=\boxed{\textbf{(D) }6}.$

~Arcticturn ~MRENTHUSIASM

~savannahsolver

~Charles3829

~IceMatrix

## Video Solution (HOW TO THINK CREATIVELY!!!)

~Education, the Study of Everything