# 2021 Fall AMC 12A Problems/Problem 14

## Problem

In the figure, equilateral hexagon $ABCDEF$ has three nonadjacent acute interior angles that each measure $30^\circ$. The enclosed area of the hexagon is $6\sqrt{3}$. What is the perimeter of the hexagon? $[asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F; draw(C--D--E--F--A--B--cycle,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); label("C",C,2*S); label("D",D,2*S); label("E",E,2*S); label("F",F,2*dir(0)); label("A",A,2*N); label("B",B,2*W); [/asy]$ $\textbf{(A)} \: 4 \qquad \textbf{(B)} \: 4\sqrt3 \qquad \textbf{(C)} \: 12 \qquad \textbf{(D)} \: 18 \qquad \textbf{(E)} \: 12\sqrt3$

## Solution 1

Divide the equilateral hexagon $ABCDEF$ into isosceles triangles $ABF$, $CBD$, and $EDF$ and triangle $BDF$. The three isosceles triangles are congruent by SAS congruence. By CPCTC, $BF=BD=DF$, so triangle $BDF$ is equilateral.

Let the side length of the hexagon be $s$. The area of each isosceles triangle is $$\frac{1}{2} a b \sin\angle C = \frac{1}{2} \cdot s \cdot s \cdot \sin{30^{\circ}} = \frac{1}{4}s^2.$$

By the Law of Cosines on triangle $ABF$, $$BF^2=s^2+s^2-2s^2\cos{30^{\circ}}=2s^2-\sqrt{3}s^2.$$

Hence, the area of the equilateral triangle $BDF$ is $$\frac{\sqrt{3}}{4} BF^2 = \frac{\sqrt{3}}{4}\left(2s^2-\sqrt{3}s^2\right)=\frac{\sqrt{3}}{2}s^2-\frac{3}{4}s^2.$$

The total area of the hexagon is thrice the area of each isosceles triangle plus the area of the equilateral triangle, or $$3\left(\frac{1}{4}s^2\right)+ \left( \frac{\sqrt{3}}{2}s^2-\frac{3}{4}s^2 \right)=\frac{\sqrt{3}}{2}s^2=6\sqrt{3}.$$ Hence, $s=2\sqrt{3}$, and the perimeter of the hexagon is $6s=\boxed{\textbf{(E)} \: 12\sqrt3}$.

## Solution 2

We will be referring to the following diagram:

$[asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F,G=(1/2)*(C+E); draw(C--D--E--F--A--B--cycle,p); draw(C--E--A--C,p+dashed); draw(D--G,p+dashed); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); dot(G,q); label("C",C,2*S); label("D",D,2*N); label("E",E,2*S); label("F",F,2*dir(0)); label("A",A,2*N); label("G",G,2*S); label("B",B,2*W); [/asy]$

Observe that \begin{align}6\sqrt3=[ACE]-3\cdot[DCE].\end{align} Letting $x=CD,$ the perimeter will be $6x.$

We know that $\angle CDG=75^{\circ}$ and using such, we have \begin{alignat*}{8} CG &= x\sin(75^{\circ}) &&= \frac{\sqrt6+\sqrt2}{4}x, \\ DG &= x\cos(75^{\circ}) &&= \frac{\sqrt6-\sqrt2}{4}x. \end{alignat*} Thus, we have \begin{align*}[ACE]&=\frac{\sqrt3}{4}\left(2\cdot CG\right)^2\\ &=\frac{\sqrt3}{4}(2+\sqrt3)x^2 \\ &=\frac{3+2\sqrt3}{4} x^2.\end{align*} Computing the area of $DCE,$ we have \begin{align*}[DCE]&=\frac12 \cdot 2\cdot CG\cdot DG \\ &=CG\cdot DG\\ &=\frac{x^2}{4}.\end{align*} Plugging back into $(1),$ we have $$6\sqrt3=\frac{3+2\sqrt3}{4} x^2 -\frac{3x^2}{4}=\frac{\sqrt3}{2}x^2,$$ which means $x=2\sqrt3$ and $6x=\boxed{\textbf{(E)} \: 12\sqrt3}.$

~ASAB

## Solution 3

We will be using this diagram:

## Video Solution by TheBeautyofMath

Cleverly done with Trig https://youtu.be/AgSE7HPCVR0

## Video Solution (Logic and Trigonometry)

~Education, the Study of Everything

~IceMatrix