2021 JMPSC Invitationals Problems/Problem 14

Problem

Let there be a $\triangle ACD$ such that $AC=5$, $AD=12$, and $CD=13$, and let $B$ be a point on $AD$ such that $BD=7.$ Let the circumcircle of $\triangle ABC$ intersect hypotenuse $CD$ at $E$ and $C$. Let $AE$ intersect $BC$ at $F$. If the ratio $\tfrac{FC}{BF}$ can be expressed as $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime, find $m+n.$

Solution

[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(10cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -75.0614580781354, xmax = 144.30457756711317, ymin = -28.5847126201819, ymax = 97.17376695854563;  /* image dimensions */ pen ccqqqq = rgb(0.8,0,0); pen qqwuqq = rgb(0,0.39215686274509803,0);   draw((0,79.2489157968718)--(0,0)--(31.036632190371098,0)--cycle, linewidth(1));  draw((0,27.518773386755257)--(0,0)--(31.036632190371098,0)--cycle, linewidth(1));  draw((0,27.518773386755257)--(0,0)--(31.036632190371098,0)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1));  draw((3.017805668614108,0)--(3.0178056686141086,3.017805668614108)--(0,3.017805668614108)--(0,0)--cycle, linewidth(1) + ccqqqq);  draw(arc((0,27.518773386755257),4.267821705160478,-90,-41.56194864878782)--(0,27.518773386755257)--cycle, linewidth(1) + qqwuqq);  draw(arc((31.036632190371098,0),4.267821705160478,138.43805135121218,180)--(31.036632190371098,0)--cycle, linewidth(1) + qqwuqq);  draw(arc((17.56520990745875,34.39792061246379),4.267821705160478,-117.05101221915062,-68.61296086793845)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1) + qqwuqq);  draw(arc((17.56520990745875,34.39792061246379),4.267821705160478,-158.61296086793843,-117.0510122191506)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1) + qqwuqq);  draw((16.464718299532908,37.20791514527062)--(13.654723766726086,36.10742353734477)--(14.755215374651927,33.29742900453795)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1) + ccqqqq);   /* draw figures */ draw((0,79.2489157968718)--(0,0), linewidth(1));  draw((0,0)--(31.036632190371098,0), linewidth(1));  draw((31.036632190371098,0)--(0,79.2489157968718), linewidth(1));  draw((0,27.518773386755257)--(0,0), linewidth(1));  draw((0,0)--(31.036632190371098,0), linewidth(1));  draw((31.036632190371098,0)--(0,27.518773386755257), linewidth(1));  draw(circle((15.51831609518555,13.75938669337763), 20.73978921320061), linewidth(1));  draw((0,27.518773386755257)--(0,0), linewidth(1));  draw((0,0)--(31.036632190371098,0), linewidth(1));  draw((31.036632190371098,0)--(17.56520990745875,34.39792061246379), linewidth(1));  draw((17.56520990745875,34.39792061246379)--(0,27.518773386755257), linewidth(1));  draw((17.56520990745875,34.39792061246379)--(0,0), linewidth(1));   /* dots and labels */ dot((0,0),linewidth(4pt) + dotstyle);  label("$A$", (-2.9352712609233205,-2.124218048187195), SW * labelscalefactor);  dot((0,27.518773386755257),dotstyle);  label("$B$", (-3.362053431439368,28.319576781957252), W * labelscalefactor);  dot((31.036632190371098,0),dotstyle);  label("$C$", (32.345388168403296,-1.9819573246818474), NE * labelscalefactor);  dot((0,79.2489157968718),dotstyle);  label("$D$", (-1.2281425788591294,81.52508737295736), NE * labelscalefactor);  dot((17.56520990745875,34.39792061246379),linewidth(4pt) + dotstyle);  label("$E$", (18.119315817868372,35.57487368072999), NE * labelscalefactor);  dot((9.672839652798576,18.94230539953703),linewidth(4pt) + dotstyle);  label("$F$", (9.299150960536716,20.779758436173815), N * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy]

$\mathbf{Lemma}:$ We claim that $EF$ is the angle bisector of $\angle BEC$.


$\mathbf{Proof:}$ Observe that $AB=5=AC$, which tells us that $\triangle ABC$ is a $45-45-90$ triangle. In cyclic quadrilateral $ABEC$, we have \[\angle ABC = 45^\circ = \angle AEC\] and \[\angle BAC+\angle BEC=180^\circ \implies \angle BEC = 90^\circ.\] Since $\angle BEA + \angle AEC = \angle BEC$, we have $\angle BEA =45^\circ = \angle AEC$. This means that $EA$, or equivalently $EF$, is an angle bisector of $\angle BEC$ in $\triangle BEC$.


$\mathbf{End~Proof}$


By the angle bisector theorem and our $\mathbf{Lemma},$ \[\frac{FC}{BF}=\frac{EC}{BE} \qquad (1).\] We seek the lengths $EC$ and $BE$.


To find $EC$, we can proceed by Power of a Point using point $D$ on circle $(ABC)$ to get $DE \cdot DC = DB \cdot DA.$ Since $DC=13$, $DB = 7$, and $AD = 12$, we have $DE=\frac{84}{13}.$ Since $CD=13$, we have \[EC=CD-DE=\frac{85}{13} \qquad (2).\]


To find $BE$, we use the Pythagorean Theorem in $BED$. (We already found $\angle BEC=90^\circ$, which tells us that supplementary $\angle BED = 90^\circ$.) By the Pythagorean Theorem, $BE^2+DE^2=BD^2.$ We found that $DE=\frac{84}{13}$, and since we are given $BD=7$, we have \[BE=\sqrt{7^2-\left (\frac{84}{13}\right )^2}=\frac{35}{13} \qquad (3).\]


Our answer, by equation $(1)$, is $\frac{EC}{BE}$. From equation $(2),$ $EC=\frac{85}{13}$ and from equation $(3),$ $BE=\frac{35}{13}$. Therefore, our final answer is $\frac{\frac{85}{13}}{\frac{35}{13}}=\frac{17}{7} \implies \boxed{24}.$

~samrocksnature

Solution 2

Note $ABEC$ is cyclic, so $\angle BEC = \angle BED = 90^o$. By Power Of A Point we have $7(7+5)=DE \cdot DC \implies DE=\frac{84}{13}$, $EC=\frac{85}{13}$. Now, note \[\angle ABC = \angle BCA\]\[\qquad =\angle BEA\]\[= \angle AEC\]Therefore, by Angle Bisector Theorem, \[\frac{FC}{BF}=\frac{EC}{BE}=\frac{85}{35} \implies \frac{17}{7} \implies 17+7=\boxed{24}\]

~Geometry285

See also

  1. Other 2021 JMPSC Invitationals Problems
  2. 2021 JMPSC Invitationals Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png