2021 WSMO Accuracy Round Problems/Problem 10

Problem

The largest value of $x$ that satisfies the equation $5x^2-7\lfloor x\rfloor\{x\}=\frac{26\lfloor x\rfloor^2}{5}$ can be expressed as $\frac{a+b\sqrt{c}}{d},$ where $c$ is not divisible by the square of any prime and $\gcd(a,b,d)=1.$ Find $a+b+c+d.$ ($\{x\}$ denotes the fractional part of $x$, or $x-\lfloor x\rfloor$.)

Solution

Let $\lfloor x \rfloor = n$ and $\{x\} = r$. Plugging this into our equation yields: \[5(n+r)^2-7nr=\frac{26n^2}{5}\] \[\Rightarrow 25r^2 + 15rn - n^2 = 0\] \[\Rightarrow r = \frac{n(\pm \sqrt{13}-3)}{10}\]


We are finding the largest $x$, so we try to maximize $n$. Assume $n>0$. Since $r=\{x\}\geq 0$, we take $r = \frac{n(\sqrt{13}-3)}{10}$. Note that: \[0 \leq r < 1\] \[\Rightarrow 0 \leq \frac{n(\sqrt{13}-3)}{10} < 1\] \[\Rightarrow 0 \leq n < \frac{5(\sqrt{13}+3)}{2}\]


Notice that $\frac{5(\sqrt{9}+3)}{2} < \frac{5(\sqrt{13}+3)}{2} < \frac{5(\sqrt{16}+3)}{2}$ $\Rightarrow 15 < \frac{5(\sqrt{13}+3)}{2} < 17.5$. We start by checking $n=17$: \[r = \frac{n(\sqrt{13}-3)}{10}\] \[\Rightarrow r = \frac{17(\sqrt{13}-3)}{10}\]


This solution is valid if $0 \leq r < 1$: \[\frac{17(\sqrt{13}-3)}{10} < 1\] \[\Rightarrow 17\sqrt{13} < 61\] \[\Rightarrow 17^2 \cdot 13 < 61^2\] \[\Rightarrow 3757 < 3721\]


This is clearly false, so we now check $n=16$. Using the same method as before, \[r = \frac{16(\sqrt{13}-3)}{10} < 1\] \[\Rightarrow 16\sqrt{13} < 58\] \[\Rightarrow 3328 < 3364\]


This is true, so $x = n+r = 16 + \frac{16(\sqrt{13}-3)}{10} = \frac{56 + 8\sqrt{13}}{5}$, giving us an answer of $56+8+13+5 = \boxed{82}$.

~BigKahuna227