2022 AMC 10B Problems/Problem 2

The following problem is from both the 2022 AMC 10B #2 and 2022 AMC 12B #2, so both problems redirect to this page.

Problem

In rhombus $ABCD$, point $P$ lies on segment $\overline{AD}$ so that $\overline{BP}$ $\perp$ $\overline{AD}$, $AP = 3$, and $PD = 2$. What is the area of $ABCD$? (Note: The figure is not drawn to scale.)

[asy] import olympiad; size(180); real r = 3, s = 5, t = sqrt(r*r+s*s); defaultpen(linewidth(0.6) + fontsize(10)); pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0); draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D)); label("$A$",A,SW); label("$B$", B, NW); label("$C$",C,NE); label("$D$",D,SE); label("$P$",P,S); [/asy]

$\textbf{(A) }3\sqrt 5 \qquad \textbf{(B) }10 \qquad \textbf{(C) }6\sqrt 5 \qquad \textbf{(D) }20\qquad \textbf{(E) }25$

Solution 1

[asy] pair A = (0,0); label("$A$", A, SW); pair B = (2.25,3); label("$B$", B, NW); pair C = (6,3); label("$C$", C, NE); pair D = (3.75,0); label("$D$", D, SE); pair P = (2.25,0); label("$P$", P, S); draw(A--B--C--D--cycle); draw(P--B); draw(rightanglemark(B,P,D)); [/asy]

\[\textbf{Figure redrawn to scale.}\]

$AD = AP + PD = 3 + 2 = 5$.

$ABCD$ is a rhombus, so $AB = AD = 5$.

$\bigtriangleup APB$ is a $3-4-5$ right triangle, hence $BP = 4$.

The area of the rhombus is base times height: $bh = (AD)(BP) = 5 \cdot 4 = \boxed{\textbf{(D) }20}$.

~richiedelgado

Solution 2 (The Area Of A Triangle)

[asy] pair A = (0,0); label("$A$", A, SW); pair B = (2.25,3); label("$B$", B, NW); pair C = (6,3); label("$C$", C, NE); pair D = (3.75,0); label("$D$", D, SE); pair P = (2.25,0); label("$P$", P, S); draw(A--B--C--D--cycle); draw(D--B); draw(B--P); draw(rightanglemark(B,P,D)); [/asy]

The diagram is from as Solution 1, but a line is constructed at $BD$.

When it comes to the sides of a rhombus, their opposite sides are congruent and parallel. This means that $\angle ABD \cong \angle BDC$, by the Alternate Interior Angles Theorem.

By SAS Congruence, we get $\triangle ABD \cong \triangle BDC$.

Since $AP=3$ and $AB=5$, we know that $BP=4$ because $\triangle APB$ is a 3-4-5 right triangle, as stated in Solution 1.

The area of $\triangle ABD$ would be $10$, since the area of the triangle is $\frac{bh}{2}$.

Since we know that $\triangle ABD \cong \triangle BDC$ and that $ABCD=\triangle ABD + \triangle BDC$, so we can double the area of $\triangle ADB$ to get $10 \cdot 2 = \boxed{\textbf{(D) }20}$.

~ghfhgvghj10, minor edits by MinecraftPlayer404

Video Solution 1

https://youtu.be/Io_GhJ6Zr_U

~Education, the Study of Everything

Video Solution(1-16)

https://youtu.be/SCwQ9jUfr0g

~~Hayabusa1

Video Solution by Interstigation

https://youtu.be/_KNR0JV5rdI?t=97

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png