2022 SSMO Relay Round 2 Problems/Problem 3

Problem

Let $T =$ TNYWR. Let $a+b = \lfloor \sqrt{T} \rfloor$. If $a^5 + b^5 = 15$, then $ab$ has two possible values. The absolute difference of these values is $\frac{x\sqrt{y}}{z}$, where $x,y$ and $z$ are positive integers, $x$ and $z$ are relatively prime, and $y$ is not divisible by the square of any prime. What is $x+y+z?$

Solution